
DB2 Universal Database for OS/390 and z/OS

XML Extender
Administration and Programming
Version 7

SC26-9949-00

���

DB2 Universal Database for OS/390 and z/OS

XML Extender
Administration and Programming
Version 7

SC26-9949-00

���

Note
Before using this information and the product it supports, please read the general information under “Appendix E. Notices” on
page 265.

First Edition (January 2001)

This edition applies to Version 7 of DB2 Universal Database Server for OS/390 and z/OS, 5675-DB2, and to any
subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book . ix
Who should use this book . ix
How to get a current version of this book ix
How to use this book . x
Highlighting conventions . x
How to read syntax diagrams . xi
Related information . xiii
How to send your comments . xv

Part 1. Introduction . 1

Chapter 1. Introduction to the XML Extender 3
XML documents . 3
XML applications . 4
Why XML and DB2? . 4
How XML and DB2 work together 5

Administration tools. 5
Storage and access methods 5
DTD repository . 6
Document Access Definitions (DADs) 6
Location path . 6
XML column: structured document storage and retrieval 7
XML collection: integrated data management 8

Chapter 2. Getting started with XML Extender 11
Scenario for the lessons . 12
Choosing a method to run the Getting Started lessons 12
Lesson: Store an XML document in an XML column 12

The scenario. 12
Planning . 13
Setting up the lesson environment 15
Enabling the XML column and storing the document 16

Lesson: Composing an XML document 22
The scenario. 22
Planning . 23
Setting up the lesson environment 26
Creating the XML collection: preparing the DAD file 26
Composing the XML document 31

Cleaning up the tutorial environment 32

Part 2. Administration . 35

Chapter 3. Preparing to use the XML Extender: administration 37
Set-up requirements . 37

Software requirements . 37
Installation requirements . 37
XML operating environment on OS/390 and z/OS 38
Initializing DB2 XML Extender 39
Workload management considerations 41
Table space considerations when enabling a database server. 42
Security considerations . 43
Backup and recovery considerations 45

© Copyright IBM Corp. 2000, 2001 iii

Administration tools . 45
Administration planning . 46

Choosing an access and storage method 46
Planning for XML columns. 48
Planning for XML collections 52
Location path . 61

Chapter 4. Using the administration tools 65
Starting the administration wizard 65

Setting up the administration wizard 65
Invoking the administration wizard 66

Using the USS odb2 command line 67

Chapter 5. Managing the database server 69
Enabling a database server for XML 69

Using the administration wizard 69
Using the command line . 70

Storing a DTD in the DTD repository table 70
Using the administration wizard 71
From the command line . 71

Disabling a server for XML . 72
Before you begin . 72
Using the administration wizard 72
Using the command line . 72

Chapter 6. Working with XML columns 73
Creating or editing the DAD file 73

Before you begin . 73
Using the administration wizard 73
Using the command line . 75

Creating or altering an XML table 76
Using the administration wizard 77
Using the command line . 77

Enabling XML columns . 77
Before you begin . 78
Using the administration wizard 78
Using the command line . 79

Indexing side tables . 80
Before you begin . 81
Creating the indexes . 81

Disabling XML columns . 81
Before you begin . 81
Using the administration wizard 81
Using the command line . 82

Chapter 7. Working with XML collections 83
Creating or editing the DAD file for the mapping scheme 83

Before you begin . 84
Composing XML documents with SQL mapping 84
Composing XML documents with RDB_node mapping 89
Specifying a stylesheet for the XML document 95
Decomposing XML documents with RDB_node mapping 95

Enabling XML collections. 101
Using the administration wizard 102
Using the command line . 102

Disabling XML collections . 103

iv DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Using the administration wizard 103
Using the command line . 103

Part 3. Programming . 105

Chapter 8. Managing XML column data 107
User-defined types and user-defined function names 107
Storing data . 108
Retrieving data . 109

Retrieving an entire document 110
Retrieving element contents and attribute values 111

Updating XML data . 113
Searching XML documents . 115

Searching the XML document by structure 116
Using the Text Extender for structural text search 117

Deleting XML documents . 119
Limitations when invoking functions from Java database (JDBC) 119

Chapter 9. Managing XML collection data 121
Composing XML documents from DB2 data 121

Before you begin. 121
Composing the XML document 121
Dynamically overriding values in the DAD file 126

Decomposing XML documents into DB2 data 130
Enabling an XML collection for decomposition 130
Decomposition table size limits 130
Before you begin. 131
Decomposing the XML document 131

Accessing an XML collection 134
Updating data in an XML collection 134
Deleting an XML document from an XML collection 135
Retrieving XML documents from an XML collection 136

Searching an XML collection 136

Part 4. Reference . 139

Chapter 10. XML Extender administration command: DXXADM 141
High-level syntax. 142
Administration subcommands 142

enable_server . 143
disable_server. 145
enable_column . 146
disable_column . 147
enable_collection . 148
disable_collection . 149

Chapter 11. XML Extender user-defined types 151

Chapter 12. XML Extender user-defined functions 153
Storage functions . 154

XMLVarcharFromFile(). 155
XMLCLOBFromFile() . 156
XMLFileFromVarchar(). 157
XMLFileFromCLOB() . 158

Retrieval functions . 158

Contents v

Content(): retrieve from XMLFILE to a CLOB 160
Content(): retrieve from XMLVARCHAR to an external server file 161
Content(): retrieval from XMLCLOB to an external server file 162

Extracting functions . 163
extractInteger() and extractIntegers() 164
extractSmallint() and extractSmallints(). 165
extractDouble() and extractDoubles() 167
extractReal() and extractReals() 169
extractChar()and extractChars() 171
extractVarchar() and extractVarchars() 173
extractCLOB() and extractCLOBs() 175
extractDate() and extractDates() 177
extractTime() and extractTimes() 179
extractTimestamp() and extractTimestamps() 181

Update function . 183
Purpose . 183
Syntax . 183
Parameters . 183
Return type. 183
Example . 184
Usage. 184

Generate unique function . 188
Purpose . 188
Syntax . 188
Return value . 188
Example . 188

Chapter 13. XML Extender stored procedures 189
Specifying include files . 189
Calling XML Extenders stored procedures 189
Increasing the CLOB limit . 190
Before you begin. 191
Administration stored procedures 191

dxxEnableSRV() . 192
dxxDisableSRV() . 193
dxxEnableColumn() . 194
dxxDisableColumn() . 195
dxxEnableCollection() . 196
dxxDisableCollection() . 197

Composition stored procedures 198
dxxGenXML() . 199
dxxRetrieveXML() . 203

Decomposition stored procedures 206
dxxShredXML() . 207
dxxInsertXML() . 210

Chapter 14. Administration support tables 213
DTD reference table . 213
XML usage table . 213

Chapter 15. Troubleshooting 215
Handling UDF return codes . 215
Handling stored procedure return codes 216
SQLSTATE codes . 217
Messages . 221

Error messages . 221

vi DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Tracing . 232
Starting the trace . 233
Stopping the trace . 234

Part 5. Appendixes . 235

Appendix A. DTD for the DAD file 237

Appendix B. Samples . 243
XML DTD . 243
XML document: getstart.xml 244
Document access definition files 244

DAD file: XML column . 244
DAD file: XML collection - SQL mapping 245
DAD file: XML - RDB_node mapping 248

Appendix C. Code page considerations 251
Terminology . 251
DB2 and XML Extender code page assumptions 251

Assumptions for importing an XML document 252
Assumptions for exporting an XML document 253

Encoding declaration considerations 254
Legal encoding declarations 254
Consistent encodings and encoding declarations 255
Consistent encodings in USS 257
Declaring an encoding. 258

Conversion scenarios . 258
Preventing inconsistent XML documents 259
Line ending considerations . 260

Processing XML documents with the linebrk utility 260

Appendix D. The XML Extender limits 263

Appendix E. Notices . 265
Trademarks. 267

Glossary . 269

Index . 273

Contents vii

||

viii DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

About this book

This section describes the following information:

v “Who should use this book”

v “How to use this book” on page x

v “Highlighting conventions” on page x

v “How to read syntax diagrams” on page xi

v “Related information” on page xiii

Who should use this book
This book is intended for the following people:

v Those who work with XML data in DB2 applications and who are familiar with
XML concepts. Readers of this document should have a general understanding
of XML and DB2. To learn more about XML, refer to the following Web site:

http://www.w3.org/XML

To learn more about DB2, see the following Web site:

http://www.ibm.com/software/data/db2/library

v DB2 database administrators who are familiar with DB2 administration concepts,
tools, and techniques.

v DB2 application programmers who are familiar with SQL and with one or more
programming languages that can be used for DB2 applications.

How to get a current version of this book
You can get the latest version of this book at the XML Extender Web site:

http://www.ibm.com/software/data/db2/extenders/xmlext/library.html

© Copyright IBM Corp. 2000, 2001 ix

How to use this book
This book is structured as follows:

Part 1. Introduction
This part provides an overview of the XML Extender and how you can use it
in your business applications. It contains a getting-started scenario that
helps you get up and running.

Part 2. Administration
This part describes how to prepare and maintain a DB2 database for XML
data. Read this part if you need to administer a DB2 database that contains
XML data.

Part 3. Programming
This part describes how to manage your XML data. Read this part if you
need to access and manipulate XML data in a DB2 application program.

Part 4. Reference
This part describes how to use the XML Extender administration
commands, user-defined types, user-defined functions, and stored
procedures. It also lists the messages and codes that the XML Extender
issues. Read this part if you are familiar with the XML Extender concepts
and tasks, but you need information about a user-defined type (UDT),
user-defined function (UDF), command, message, metadata tables, control
tables, or code.

Part 5. Appendixes
The appendixes describe the DTD for the document access definition,
samples for the examples and getting started scenario, and other IBM XML
products.

Highlighting conventions
This books uses the following conventions:

Bold Bold text indicates:

v Commands

v Field names

v Menu names

v Push buttons

Italic Italic text indicates:

v Variable parameters that are to be replaced with
a value

v Emphasized words

v First use of a glossary term

UPPERCASE Uppercase letters indicate:

v Data types

v Column names

v Table names

Example Example text indicates:

v System messages

v Values you type

v Coding examples

x DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

v Directory names

v File names

v Path names

How to read syntax diagrams
Throughout this book, the syntax of commands and SQL statements is described
using syntax diagrams.

Read the syntax diagrams as follows:

v Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�
 symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� required_item �

v Optional items appear below the main path.

�� required_item
optional_item

�

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item �

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

�

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

�

About this book xi

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

�

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item �

If the repeat arrow contains punctuation, you must separate repeated items with
the specified punctuation.

�� required_item �

,

repeatable_item �

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Keywords appear in uppercase (for example, FROM). In the XML Extender,
keywords can be used in any case. Terms that are not keywords appear in
lowercase letters (for example, column-name). They represent user-supplied
names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

xii DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Related information
The following documents might be useful when using the XML Extender and related
products:

Document Order Number Description

Program Directory for IBM
Database 2 Universal
Database Server for OS/390
with National Language
VersionsProgram Directory

GI10–8216 This document describes the
installation of DB2 UDB
Server for OS/390® and
related products.

DB2 Universal Database for
OS/390 and z/OS
Administration Guide, Version
7

SC26-9931 These books describe how to
design, implement, and
maintain a DB2 database.

DB2 Universal Database for
OS/390 and z/OS Application
Programming Guide and
Reference for Java, Version 7

SC26-9932 This books describes using
Java with DB2 for OS/390
and z/OS.

DB2 Universal Database for
OS/390 and z/OS Application
Programming and SQL
Guide, Version 7

SC26-9933 This book describes the
application development
process and how to code,
compile, and execute
application programs that use
embedded SQL and APIs to
access the database.

DB2 Universal Database for
OS/390 and z/OS ODBC
Guide and Reference,
Version 7

SC26-9941 This book provides the
information necessary to write
applications using DB2 ODBC
to access IBM DB2 servers
as well as any database that
supports DRDA® level 1 or
DRDA level 2 protocols. This
book should also be used as
a supplement when writing
portable ODBC applications
that can be executed in a
native DB2 for OS/390 and
z/OS® environment using
DB2 ODBC.

DB2 Universal Database for
OS/390 and z/OS Release
Planning Guide, Version 7

SC26-9943 DB2 Release Guide is
intended to help you plan for
the current version of the
licensed program DB2 for
OS/390 and z/OS.

DB2 Universal Database for
OS/390 and z/OS SQL
Reference, Version 7

SC26-9944 This book serves as a
reference for SQL for DB2
Universal Database® Server
for OS/390 and z/OS. It is
intended for end users,
application programmers,
system and database
administrators, and for
persons involved in error
detection and diagnosis.

About this book xiii

Document Order Number Description

DB2 Extender page:
http://www.ibm.com/software/data/db2/extenders

This page contains
information about the DB2
Extenders as well as
technologies that are
pertinent to the extenders.

DB2 Universal Database for
OS/390 and z/OS Image,
Audio, and Video, Version 7

SC26-9947 This book describes how to
administer a DB2 database
for image, audio, and video
data. It also describes how to
use application programming
interfaces that are provided
by the extenders to access
and manipulate these types
of data.

DB2 Universal Database for
OS/390 and z/OS Text
Extender Administration and
Programming, Version 7

SC26-9948 This book describes how to
administer a DB2 database
for text data. It also describes
how to use application
programming interfaces that
are provided by the extenders
to access and manipulate
these types of data.

Integrating XML with DB2
XML Extender and DB2 Text
Extender

SG24-6130 This book describes how to
use XML and Text Extenders
with DB2.

OS/390 UNIX System
Services Command
Reference

SC28-1892 This book describes USS
commands.

OS/390 UNIX System
Services Programming:
Assembler Callable Services
Reference

SC28-1899 This book describes the USS
Assembler Callable Services.

OS/390 UNIX System
Services Planning

SC28-1890 This book describes planning
for USS.

OS/390 UNIX System
Services User’s Guide

SC28-1891 This book provides tasks for
using USS.

IBM Character Data
Representation Architecture,
Reference and Registry

SC09-2190 This book describes IBM
Character Data
Representation Architecture,
Reference and Registry.

xiv DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other iSeries
documentation, fill out the readers’ comment form at the back of this book.

v If you prefer to send comments by mail, use the readers’ comment form with the
address that is printed on the back. If you are mailing a readers’ comment form
from a country other than the United States, you can give the form to the local
IBM branch office or IBM representative for postage-paid mailing.

v If you prefer to send comments by FAX, use either of the following numbers:

– United States, Canada, and Puerto Rico: 1-800-937-3430

– Other countries: 1-507-253-5192

v If you prefer to send comments electronically, use one of these e-mail addresses:

– Comments on books:

RCHCLERK@us.ibm.com

– Comments on the iSeries Information Center:

RCHINFOC@us.ibm.com

Be sure to include the following:

v The name of the book.

v The publication number of a book.

v The page number or topic of a book to which your comment applies.

About this book xv

xvi DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Part 1. Introduction

This part provides an overview of the XML Extender and how you can use it in your
business applications.

© Copyright IBM Corp. 2000, 2001 1

2 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 1. Introduction to the XML Extender

The IBM® DB2® Extenders™ family provides data and metadata management
solutions to handle traditional data types and new, or non-traditional, types of data.
The DB2 XML Extender helps you integrate the power of IBM’s DB2 Universal
Database for OS/390 and z/OS with the flexibility of eXtensible Markup Language
(XML).

DB2’s XML Extender provides the ability to store and access XML documents, to
generate XML documents from existing relational data, and to insert rows into
relational tables from XML documents. XML Extender provides new data types,
functions, and stored procedures to manage your XML data in DB2 .

The XML Extender is available for the following operating systems:

v Windows NT®

v AIX®

v Sun Solaris

v Linux

v NUMA-Q

v OS/390 and z/OS and zOS

v AS/400®

XML documents
There are many applications in the computer industry, each with its own strengths
and weaknesses. Users today have the opportunity to choose whichever application
best suits the need requirements of the task at hand. However, because users tend
to share data between different applications, they are continually faced with the
problem of replicating, transforming, exporting, or saving their data in formats that
can be imported into other applications. Many of these transforming processes tend
to drop some of the data, or they at least require that users go through the tedious
process of ensuring that the data remained consistent. This manual checking
consumes both time and money.

Today, one of the ways to address this problem is for application developers to write
Open Database Connectivity (ODBC) applications, a standard application
programming interface (API) for accessing data in both relational and nonrelational
database management systems. These applications save the data in a database
management system. From there, the data can be manipulated and presented in
the form in which it is needed for another application. Database applications must
be written to convert the data into a form that an application requires; however,
applications change quickly and quickly become obsolete. Applications that convert
data to HTML provide presentation solutions, but the data presented cannot be
practically used for other purposes. If there were another method that separated the
data from its presentation, this method could be used as a practical form of
interchange between applications.

XML has emerged to address this problem. XML is an acronym for eXtensible
Markup Language. It is extensible in that the language itself is a metalanguage that
allows you to create your own language depending on the needs of your enterprise.
You use XML to capture not only the data for your particular application, but also
the data structure. Although XML is not the only data interchange format, XML has

© Copyright IBM Corp. 2000, 2001 3

|

emerged as the accepted standard. By adhering to this standard, applications can
share data without first transforming it using proprietary formats.

XML applications
Because XML is now the accepted standard for data interchange, many applications
are emerging that will be able to take advantage of it.

Suppose you are using a particular project management application and you want
to share some of its data with your calendar application. Your project management
application could export tasks in XML, which could then be imported as-is into your
calendar application.In today’s interconnected world, application providers have
strong incentives to make an XML interchange format a basic feature of their
application.

Why XML and DB2?
Although XML solves many problems by providing a standard format for data
interchange, some challenges remain. When building an enterprise data application,
you must answer questions such as:

v How often do I want to replicate the data?

v What kind of information must be shared between applications?

v How can I quickly search for the information I need?

v How can I have a particular action, such as a new entry being added, trigger an
automatic data interchange between all my applications?

These kinds of issues can be addressed only by a database management system.
By incorporating the XML information and meta-information directly in the database,
you can more efficiently obtain the XML results that your other applications need.
This is where the XML Extender can assist you. With the XML Extender, you can
take advantage of the power of DB2 in many XML applications.

With the content of your structured XML documents in a DB2 database, you can
combine structured XML information with traditional relational data. Based on the
application, you can choose whether to store entire XML documents in DB2 as in
user-defined types provided for XML data (XML data types), or you can map the
XML content as base data types in relational tables. For XML data types, the XML
Extender adds the power to search rich data types of XML element or attribute
values, in addition to the structural text search that the DB2 Text Extender for
OS/390 provides.

What XML Extender can do for your your applications:

v Store entire XML documents as column data or externally as a file, while
extracting desired XML element or attribute values and storing it in side tables,
indexed subtables for high-speed searching. By storing the documents as column
data, you can:

– Perform fast search on XML elements or attributes that have been extracted
and stored in side tables as SQL basic data types and indexed

– Update the content of an XML element or the value of an XML attribute

– Extract XML elements or attributes dynamically using SQL queries

– Validate XML documents during insertion and update

– Perform structural-text search with the Text Extender

4 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Storing XML documents as column data is known as the XML column method of
storage and access.

v Compose or decompose contents of XML documents with one or more relational
tables, using the XML collection method of storage and access

How XML and DB2 work together
XML Extender provides the following features to help you manage and exploit XML
data with DB2:

v Administration tools to help you manage the integration of XML data in relational
tables

v Storage and access methods for XML data within the database

v A data type definition (DTD) repository for you to store DTDs used to validate
XML data

v A mapping file called the Document Access Definition (DAD), which is used to
map XML documents to relational data

Administration tools
The XML Extender administration tools help you enable your database and table
columns for XML, and map XML data to DB2 relational structures. The XML
Extender provides the following administration tools for your use, depending on how
you want to complete you administration tasks..

XML Extender provides a command line tool, an administration wizard, and
programming interfaces for administration tasks.

v The XML Extender administration wizards provide a graphical user interface for
administration tasks.

v The DXXADM command can be run from UNIX System Services (USS).

v JCL based on samples provided in the SDXXJCL data set, as listed in Table 6 on
page 37

v The XML Extender administration stored procedures allow you to invoke
administration commands from a program.

Storage and access methods
XML Extender provides two storage and access methods for integrating XML
documents with DB2 data structures: XML column and XML collection. These
methods have very different uses, but can be used in the same application.

XML column method
This method helps you store intact XML documents in DB2. The XML
column method works well for archiving documents. The documents are
inserted into columns that are enabled for XML and can be updated,
retrieved, and searched. Element and attribute data can be mapped to DB2
tables (side tables), which can be indexed for fast search.

XML collection method
This method helps you map XML document structures to DB2 tables so that
you can either compose XML documents from existing DB2 data, or
decompose XML documents, storing the untagged data in DB2 tables. This
method is good for data interchange applications, particularly when the
contents of XML documents are frequently updated.

Chapter 1. Introduction to the XML Extender 5

DTD repository
The XML Extender allows your to store DTDs, the set of declarations for XML
elements and attributes. When a database server is enabled for XML, a DTD
repository table (DTD_REF) is created. Each row of this table represents a DTD
with additional metadata information. Users can access this table to insert their own
DTDs. The DTDs are used for validating the structure of XML documents.

Document Access Definitions (DADs)
You specify how structured XML documents are to be processed by the XML
Extender using a document access definition (DAD) file. The DAD file is an
XML-formatted document that maps the XML document structure to a DB2 table.
You use a DAD file both when storing XML documents in a column, or when
composing or decomposing XML data. The DAD file specifies whether you are
storing documents using the XML column method, or defining an XML collection for
composition or decomposition.

Location path
A location path specifies the location of an element or attribute within an XML
document. The XML Extender uses the location path to navigate the structure of the
XML document and locate elements and attributes.

For example, a location path of /Order/Part/Shipment/Shipdate points to the
shipdate element, that is a child of the Shipment, Part, and Order elements, as
shown in the following example:
<Order>
<Part>
<Shipment>

<Shipdate>
...

Figure 1 shows an example of a location path and its relationship to the structure of
the XML document.

The location path is used in the following situations:

Location path: “/Order/Part/Shipment/ShipDate”

ShipDate

American Motors

1998-08-19 Boat

68

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02

ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure 1. Storing documents as structured XML documents in a DB2 table column

6 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|

|
|
|

|
|
|
|
|

|
|
|

v For XML columns:

– To identify the elements and attributes to be extracted or updated when using
the XML Extender user-defined functions.

– To map the content of an XML element or attribute to a side table.

v For XML collections: To override values in the DAD file from a stored procedure.

To specify the location path, the XML Extender uses a subset of the XML Path
Language (XPath), the language for addressing parts of an XML document.

For more information about XPath, see the following Web page: For XPath, see:
http://www.w3.org/TR/xpath

See “Location path” on page 61 for syntax and restrictions.

XML column: structured document storage and retrieval
Because XML contains all the necessary information to create a set of documents,
there will be times when you want to store and maintain the document structure as
it currently is.

For example, if you are a news publishing company that has been serving articles
over the Web, you might want to maintain an archive of published articles. In such
a scenario, the XML Extender lets you store your complete or partial XML articles in
a column of a DB2 table. This type of XML document storage is called an XML
column, as shown in Figure 2.

The XML column storage access method allows you to manage your XML
documents using DB2. You store XML documents in a column of XML type,
providing a way to query the structure and contents of document. You can associate
and store a DTD in DB2 for one or more documents. Additionally, you can map
element and attribute content to DB2 tables, called side tables, that can be indexed.
The column that is used to store the document is called an XML column, specifying
that the column is used for the XML column access and storage method.

You specify the XML column using the document access definition (DAD) file. The
DAD file identifies the XML column and maps XML element and attribute content to
be stored in the side tables that are to be indexed.

XML Extender user-defined types
The XML Extender provides the following user-defined types for use with XML
columns:

<?xml?>
<!DOCTYPE…>

<Order key="1">

…

</Order>

DB2 XML document

XML CLOB

Figure 2. Storing structured XML documents in a DB2 table column

Chapter 1. Introduction to the XML Extender 7

v XMLVarchar

v XMLCLOB

v XMLFILE

User-defined types are data types created by a DB2 application or tool.

These data types are used to identify the storage type of XML documents in the
application table. You can also store XML documents as files on the file system,
specifying a file name.

All the XML Extender’s user-defined types have the qualifier DB2XML, which is the
schema name of the DB2 XML Extender user-defined types. For example:
db2xml.XMLVarchar

The DB2 XML Extender provides powerful user-defined functions (UDFs) to store
and retrieve XML documents in XML columns, as well as to extract XML element or
attribute values. A UDF is a function that is defined to the database management
system and can be referenced thereafter in SQL statements. The XML Extender
provides the following types of UDFs:

v Storage: Stores intact XML documents in XML-enabled columns at XML data
types

v Extract: Extracts XML documents, or the values specified for elements and
attributes as base data types

v Update: Updates entire XML documents or specified element and attribute values

XML Extender user-defined functions
The XML user-defined functions (UDFs) allow you to perform powerful searches on
general SQL data types. Additionally, you can use the DB2 Text Extender for
OS/390 with the XML Extender to perform structural and full text searches on text in
XML documents. This powerful search capability can be used, for example, to
improve the usability of a Web site that publishes large amounts of readable text,
such as newspaper articles or Electronic Data Interchange (EDI) applications, which
have frequently searchable elements or attributes.

All the XML Extender’s UDFs have the qualifier DB2XML, which is the schema
name of the DB2 XML Extender UDFs. The UDFs operate on XML UDTs when
working with XML documents in the database.

XML collection: integrated data management
Relational data is either decomposed from incoming XML documents or used to
compose outgoing XML documents. Decomposed data is the untagged content of
an XML document stored in one or more database tables. Or, XML documents are
composed from existing data in one or more database tables. If your data is to be
shared with other applications, you might want to be able to compose and
decompose incoming and outgoing XML documents and manage the data as
necessary to take advantage of the relational capabilities of DB2. This type of XML
document storage is called XML collection.

An example of an XML collection is shown in Figure 3 on page 9.

8 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|
|
|
|
|
|
|
|

The XML collection is defined in a DAD file, which specifies how elements and
attributes are mapped to one or more relational tables. The collection is a set of
columns, associated with a DAD file, that contain the data in a particular XML
document or set of XML documents. You can define a collection name by enabling
it, and then refer to it by name when issuing a stored procedure to compose or
decompose XML documents, called an enabled XML collection. The collection is
given a name so that it is easily run with stored procedures when composing and
decomposing the XML documents.

When you define a collection in the DAD file, you use one of two types of mapping
schemes, SQL mapping or RDB_node mapping. that define the tables, columns,
and conditions used to associate XML data with DB2 tables.. SQL mapping uses
SQL SELECT statements to define the DB2 tables and conditions used for the
collection. RDB_node mapping uses an XPath-based relational database node, or
RDB_node, which has child elements.

Stored procedures are provided to compose or decompose XML documents. The
stored procedures use the qualifier DB2XML, which is the schema name of the
XML Extender.

DB2

Collection

<?xml?>
<!DOCTYPE…>

<Order key="1">

…

</Order>

XML document

Figure 3. Storing documents as untagged data in DB2 tables

Chapter 1. Introduction to the XML Extender 9

10 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 2. Getting started with XML Extender

This chapter shows you how to get started using the XML Extender to access and
modify XML data for your applications. By following the provided tutorial lessons,
you can set up a database using provided sample data, map SQL data to an XML
document, store XML documents in the database, and then search and extract data
from the XML documents.

In the administration lessons, you use the odb2 command for UNIX System
Services (USS) with XML Extender administration commands. You can accomplish
these tasks with the XML Extender administration wizard, which is also described in
this book. In XML data management lessons, you will use XML Extender-provided
UDFs and stored procedures. Most of the examples in the rest of the book draw on
the sample data that is used in this chapter.

Required: To complete the lessons in this chapter, you must have the following
prerequisites installed:

v DB2 for OS/390 and z/OS Version 7

v XML Toolkit for OS/390 and z/OS

v USS set up

v odb2 command line

v Run the the DXXGPREP JCL job, as described in “Initializing the XML Extender
environment using DXXGPREP” on page 39.

Additionally, the DB2 database server must have enabled by the DB2 administrator.
See “Initializing DB2 XML Extender” on page 39 to learn what this task requires.

The lessons are as follows:

v Store an intact XML document in a DB2 table column

– Plan the XML user-defined type (UDT) in which to store the document and the
XML elements and attributes to be frequently searched.

– Set up the database and tables

– Insert the DTD into the DTD repository table

– Prepare a DAD for an XML column

– Add a column of XML type to an existing table

– Enable the new column for XML

– Create indexes on the side tables

– Store an XML document in the XML column

– Search the XML column using XML Extender UDFs

v Create an XML document from existing data

– Plan the data structure of the XML document

– Set up the database and tables

– Prepare a document access definition (DAD) file for an XML collection

– Compose the XML document from existing data

– Retrieve the XML document from the database

v Clean up the database

© Copyright IBM Corp. 2000, 2001 11

Scenario for the lessons
In these lessons, you work for ACME Auto Direct, a company that distributes cars
and trucks to automotive dealerships. You have been given two tasks. First you will
set up a system in which orders can be archived in the SALES_DB database for
querying by the sales department. The second task is to take information in an
existing purchase order database, SALES_DB, and extract key information from it
to be stored in XML documents.

Choosing a method to run the Getting Started lessons
Several methods for running the scripts and commands are provided. You can use
USS with the odb2 command line, or execute jobs from the TSO environment. See
“XML operating environment on OS/390 and z/OS” on page 38 to learn more about
using XML Extender in the OS/390 and z/OS operating environment.

See “Initializing the XML Extender environment using DXXGPREP” on page 39 to
learn how to set up the samples for the Getting Started lessons.

v Use the odb2 command line to run SQL statements. See “Software requirements”
on page 37 to learn how to download and install this tool.

From USS prompt type:
odb2

A command prompt is displayed, from which you can enter SQL commands.

v Alternatively, start TSO to submit jobs that will issue equivalent steps.

Lesson: Store an XML document in an XML column
The XML Extender provides a method of storing and accessing whole XML
documents in the database, called XML column. Using the XML column method,
you can store the document using the XML file types, index the column in side
tables, and then query or search the XML document. This storage method is
particularly useful for archival applications in which documents are not frequently
updated.

The scenario
You have been given the task of archiving sales data for the service department.
The data is stored in XML documents that use the same DTD. The service
department will use these XML documents when working with customer requests
and complaints.

The service department has provided a recommended structure for the XML
documents and specified which element data they believe will be queried most
frequently. They would like the XML documents stored in the SALES_TAB table in
the SALES_DB database and want be able to search them quickly. The SALES_DB
table will contain two columns with data about each sale, and a third column to
contain the XML document. This column is called ORDER.

You will determine the XML Extender-provided user-defined types (UDTs) in which
to store the XML document, as well as which XML elements and attributes will be
frequently queried. Next, you will set up the SALES_DB database for XML, create
the SALES_TAB table, and enable the ORDER column so that you can store the
intact document in DB2. You will also insert a DTD for the XML document for
validation and then store the document as an XMLVARCHAR data type. When you

12 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

enable the column, you will define side tables to be indexed for the structural
search of the document in a document access definition (DAD) file, an XML
document that specifies the structure of the side tables. To see samples of the DAD
file, the DTD, and the XML document, see “Appendix B. Samples” on page 243.

The SALES_TAB is described in Table 1. The XML column to be enabled for XML,
ORDER, is shown in italics.

Table 1. SALES_TAB table

Column name Data type

INVOICE_NUM CHAR(6) NOT NULL PRIMARY KEY

SALES_PERSON VARCHAR(20)

ORDER XMLVARCHAR

Planning
Before you begin working with the XML Extender to store your documents, you
need to understand the structure of the XML document so that you can determine
how to search the document. When planning how to search the document, you
need to determine:

v The XML user-defined type in which you will store the XML document

v The XML elements and attributes that the service department will frequently
search, so that their content can be stored in side tables and indexed to improve
performance.

The following sections will describe how to make these decisions.

The XML document structure
The XML document structure for this lesson takes information for a specific order
that is structured by the order key as the top level, then customer, part, and
shipping information on the next level. The XML document is described in “XML
document: getstart.xml” on page 244.

This lesson also provides a sample DTD for you to use in understanding and
validating the XML document structure. You can see the DTD file in “XML DTD” on
page 243.

Determining the XML data type for the XML column
The XML Extender provides XML user defined types in which you define a column
to hold XML documents. These data types are:

v XMLVarchar: for small documents stored in DB2

v XMLCLOB: for large documents stored in DB2

v XMLFILE: for documents stored outside DB2

In this lesson, you will store a small document in DB2 and will, therefore, use the
XMLVarchar data type.

Determining elements and attributes to be searched
When you understand the XML document structure and the needs of the
application, you can determine which elements and attributes to be searched: such
as the elements and attributes that will be searched or extracted most frequently, or
those that will be the most expensive to query. The service department has
indicated they will be frequently querying the order key, customer name, price, and
shipping date of an order, and need quick performance for these searches. This
information is contained in elements and attributes of the XML document structure.

Chapter 2. Getting started with XML Extender 13

|
|

|

|

|

|
|

Table 2 describes the location paths of each element and attribute.

Table 2. Elements and attributes to be searched

Data Location path

order key /Order/@key

customer /Order/Customer/Name

price /Order/Part/ExtendedPrice

shipping date /Order/Part/Shipment/ShipDate

Mapping the XML document to the side tables
You will create a DAD file for the XML column, which is used to store the XML
document in DB2. It also maps the XML element and attribute contents to DB2 side
tables used for indexing, which improves search performance. In the last section,
you saw which elements and attributes are to be searched. In this section, you
learn more about mapping these element and attribute values to DB2 tables that
can be indexed.

After identifying the elements and attributes to be searched, you determine how
they should be organized in the side tables, how many tables and which columns
are in what table. Typically, you organize the side tables by putting similar
information in the same table. The structure is also determined by whether the
location path of any elements can be repeated more than once in the document.
For example in our document, the part element can be repeated multiple times, and
therefore, the price and date elements can occur multiple times. Elements that can
occur multiple times must each be in their own side tables.

Additionally, you also must determine what DB2 base types the element or attribute
values should use. Typically, this is easily determined by the format of the data. If
the data is text, choose VARCHAR; if the data is an integer, choose INTEGER; or if
the data is a date, and you want to do range searches, choose DATE.

In this tutorial, you will map the elements and attributes to the following side tables:

ORDER_SIDE_TAB

Column name Data type Location path Multiple
occurring?

ORDER_KEY INTEGER /Order/@key No

CUSTOMER VARCHAR(16) /Order/Customer/Name No

PART_SIDE_TAB

Column name Data type Location path Multiple
occurring?

PRICE DECIMAL(10,2) /Order/Part/ExtendedPrice Yes

SHIP_SIDE_TAB

Column name Data type Location path Multiple
occurring?

DATE DATE /Order/Part/Shipment/ShipDate Yes

14 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|

Getting started scripts and samples
For this tutorial, you use a set of scripts and JCL samples to set up your
environment and perform the steps in the lessons. These scripts are in the
dxx_install/samples/cmd directory (where dxx_install is the directory in USS,
where the sample DTD, DAD, and XML files are copied by the DXXGPREP job, see
“Initializing the XML Extender environment using DXXGPREP” on page 39).

Table 3 lists the USS and JCL samples that are provided to complete the getting
started tasks, as well as the suggested role in the organization that might have the
correct authority to run the samples.

Table 3. List of the XML column lesson samples

Role Description USS command files JCL file

administrator Creates and populates
the database and
tables used for the
lesson

Getstart_db.cmd dxxgdb

administrator Binds and enables the
database server

Getstart_prep.cmd dxxgprep

application
developer

Insert the dtd
getstart.dtd into the
dtd_ref table

Getstart_insertDTD.cmd dxxgidtd

administrator Creates SALES_TAB
for XML column

Getstart_createTabCol.cmd dxxgctco

administrator Adds the ORDER
column to SALES_TAB

Getstart_alterTabCol.cmd dxxgatco

administrator Enables the ORDER
column as an XML
column

Getstart_enableCol.cmd dxxgecol

administrator Create indexes on side
tables

Getstart_createIndex.cmd dxxgcrin

application
developer

Inserts an XML
document into the
SALES_TAB XML
column

Getstart_insertXML.cmd dxxgixml

application
developer

Queries the XML
document held in the
sales_tab XML column
through the side tables

Getstart_queryCol.cmd dxxgcqol

administrator Cleans up the
environment

Getstart_clean.cmd dxxaclen

These samples are provided for your use in your applications.

Setting up the lesson environment
In this section, you create the database and tables used for the sample data.

Creating the database
In this section, you create a sample database, create the tables to hold data, and
then insert sample data.

To create the database:

Chapter 2. Getting started with XML Extender 15

1. Ensure that the database server has been enabled by the DB2 administrator.
See “Initializing DB2 XML Extender” on page 39 to learn how to enable the
server.

2. Change to the dxx_install/samples/cmd directory, where dxx_install is directory
in USS where the sample DTD, DAD, and XML files are located. The sample
files contain references to files that use absolute path names. Check the sample
files and change these values for your directory paths.

3. Run the GETSTART_DB command, using one of the following methods:

odb2 command line: Enter the following command:
getstart_db.cmd

See “Choosing a method to run the Getting Started lessons” on page 12 to learn
how to start the odb2 command line.

TSO: Submit the dxxgdb JCL job.

Enabling the XML column and storing the document
In this lesson, you will enable a column for XML Extender and store an XML
document in the column. For these tasks, you will:

1. Insert the DTD for the XML document into the DTD reference table, DTD_REF.

2. Prepare a DAD file that specifies the XML document location and side tables for
structural search.

3. Add a column in the SALES_TAB table with an XML user-defined type of
XMLVARCHAR.

4. Enable the column for XML.

5. Index the side tables for structural search.

6. Store the document using a user-defined function, which is provided by the XML
Extender.

Storing the DTD in the DTD repository
You can use a DTD to validate XML data in an XML column. The XML Extender
creates a table in the XML-enabled database, called DTD_REF. The table is known
as the DTD reference and is available for you to store DTDs. When you validate
XML documents, you must store the DTD in this repository. The tutorial DTD is
dxx_install/samples/dtd/getstart.dtd.

To insert the DTD:

Enter the SQL INSERT statement using one of the following methods:

Command line:

v Connect to the database and enter the following SQL INSERT command, all on
the same line:

DB2 INSERT into DB2XML.DTD_REF values('dxx_install/samples/dtd/getstart.dtd',
DB2XML.XMLClobFromFile('dxx_install/samples/dtd/getstart.dtd'), 0, 'user1',
'user1', 'user1')

v Or, run the following command file to insert the DTD:
getstart_insertDTD.cmd

TSO: Submit the dxxgidtd JCL job.

16 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Preparing the DAD file
The DAD file for the XML column has a simple structure. You specify that the
storage mode is XML column, and you define the tables and columns for indexing.

In the following steps, elements in the DAD are referred to as tags and the
elements of your XML document structure are referred to as elements. A sample of
a DAD file similar to the one you will create is in
dxx_install/samples/dad/getstart_xcolumn.dad. It has some minor differences
from the file generated in the following steps. If you use it for the lesson, note that
the file paths might be different that for your environment, the <validation> value is
set to NO, rather than YES.

To prepare the DAD file:

1. Open a text editor and name the file getstart_xcolumn.dad

Note that all the tags used in the DAD file are case sensitive.

2. Create the DAD header, with the XML and the DOCTYPE declarations.
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "dxx_install/dtd/dad.dtd">

The DAD file is an XML document and requires XML declarations.

3. Insert opening and closing <DAD></DAD> tags. All other tags are located
inside these tags.

4. Insert opening and closing <DTDID></DTDID> tags with a DTD ID to specify a
DTD if the document will be validated:
<dtdid>dxx_install/samples/dtd/getstart.dtd</dtdid>

Verify that this string matches the value used as the first parameter value
when inserting the DTD in the DTD reference table in “Storing the DTD in the
DTD repository” on page 16. For example, the path you used for the DTDID
might be different be different that the above string if you are working on a
different machine drive.

5. Specify opening and closing <validation></validation> tags and a keyword YES
or NO to indicate whether the XML Extender is to validate the XML document
structure using the DTD you inserted into the DTD repository table.
<validation>YES</validation>

The value of <validation> must be in uppercase.

6. Insert opening and closing <Xcolumn></Xcolumn> tags to define the storage
method as XML column.
<Xcolumn>
</Xcolumn>

7. Insert opening and closing <table></table> tags for each side table that is to
be generated.
<Xcolumn>
<table name="order_side_tab">
</table>
<table name="part_side_tab">
</table>
<table name="ship_side_tab">
</table>
</Xcolumn>

8. Insert <column/> tags for each column that is to be included in the side tables.
Each <column/> tag has four attributes:

v name: the name of the column

Chapter 2. Getting started with XML Extender 17

v type: the SQL data type of the column

v path: the location path of the corresponding element in the XML document,
using XPath syntax. See “Location path” on page 61 for location path
syntax.

v multi-occurrence: indication of whether the location path of the element
can occur more than once in the XML document structure

<Xcolumn>
<table name="order_side_tab">

<column name="order_key"
type="integer"
path="/Order/@key"
multi_occurrence="NO"/>

<column name="customer"
type="varchar(50)"
path="/Order/Customer/Name"
multi_occurrence="NO"/>

</table>
<table name="part_side_tab">

<column name="price"
type="decimal(10,2)"
path="/Order/Part/ExtendedPrice"
multi_occurrence="YES"/>

</table>
<table name="ship_side_tab">

<column name="date"
type="DATE"
path="/Order/Part/Shipment/ShipDate"
multi_occurrence="YES"/>

</table>
</Xcolumn>

9. Ensure that you have a closing </Xcolumn> after the last </table> tag.

10. Ensure that you have a closing </DAD> after the </Xcolumn> tag.

11. Save the file as getstart_xcolumn.dad.

You can compare the file you have just created with the sample file,
dxx_install/samples/dad/getstart_xcolumn.dad. This file is a working copy of the
DAD file required to enable the XML column and create the side tables. The sample
files contain references to files that use absolute path names. Check the sample
files and change these values for your directory paths.

Creating the SALES_TAB table
In this section you create the SALES_TAB table. Initially, it has two columns with
the sale information for the order.

To create the table: Enter the following CREATE TABLE statement using one of
the following methods: Command line:

v Enter the following DB2 commands:
DB2 CONNECT TO SALES_DB

DB2 CREATE TABLE SALES_TAB(INVOICE_NUM CHAR(6) NOT NULL PRIMARY KEY,
SALES_PERSON VARCHAR(20))

v Or, run the following command file to create the table:
getstart_createTabCol.cmd

TSO: Submit the dxxgctco JCL job.

Adding the column of XML type
Next, add a new column to the SALES_TAB table. This column will contain the
intact XML document that you generated earlier and must be of XML UDT. The XML

18 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Extender provides multiple data types, described in “Chapter 11. XML Extender
user-defined types” on page 151. In this tutorial, you will store the document as
XMLVARCHAR.

To add the column of XML type:

Run the SQL ALTER TABLE statement using one of the following methods:
Command line:

v Enter the following SQL statement:
DB2 ALTER TABLE SALES_TAB ADD ORDER DB2XML.XMLVARCHAR

v Or, run the following command file to alter the table:
getstart_alterTabCol.cmd

TSO: Submit the dxxgatco JCL job.

Enabling the XML column
After you create the column of XML type, you enable it for the XML Extender. When
you enable the column, the XML Extender reads the DAD file and creates the side
tables. Before enabling the column, you must:

v Determine whether you want to create a default view of the XML column, which
contains the XML document joined with the side-table columns. You can specify
the default view when querying the XML document. In this lesson, you will
specify a view with the -v parameter.

v Determine whether you want to specify a primary key as the ROOT ID, the
column name of the primary key in the application table and a unique identifier
that associates all side tables with the application table. If you do not specify a
primary key, the XML Extender adds the DXXROOT_ID column to the application
table and to the side tables.

The ROOT_ID column is used as key to tie the application and side tables
together, allowing the XML Extender to automatically update the side tables if the
XML document is updated. In this lesson, you will specify the name of the
primary key in the command (INVOICE_NUM) with the -r parameter. The XML
Extender will then use the specified column as the ROOT_ID and add the
column to the side tables.

v Determine whether you want to specify a table space or use the default table
space. In this lesson, you will use the default table space.

To enable the column for XML:

Run the DXXADM ENABLE_COLUMN command, using one of the following
methods: Command line:

v Enter the following command:
dxxadm enable_column SALES_DB SALES_TAB ORDER GETSTART_XCOLUMN.DAD

-v SALES_ORDER_VIEW -r INVOICE_NUM

v Or, run the following command file to enable the column:
dxxadm enable_column SALES_DB SALES_TAB ORDER GETSTART_XCOLUMN.DAD

-v SALES_ORDER_VIEW -r INVOICE_NUM

TSO: Submit the dxxgecol JCL job.

The XML Extender creates the side tables with the INVOICE_NUM column and
creates the default view.

Chapter 2. Getting started with XML Extender 19

Important: Do not modify the side tables in any way. Updates to the side tables
should only be made through updates to the XML document itself. The XML
Extender will automatically update the side tables when you update the XML
document in the XML column.

Viewing the column and side tables
When you enabled the XML column, you created a view of the XML column and
side tables. You can use this view when working with the XML column.

To view the XML column and side-table columns: Enter the following SQL
SELECT statement from the command line:
DB2 SELECT * FROM SALES_ORDER_VIEW

The view shows the columns in the side tables, as specified in the
getstart_xcolumn.dad file.

Creating indexes on the side tables
Creating indexes on side tables allows you to do fast structural searches of the
XML document. In this section, you create indexes on key columns in the side
tables that were created when you enabled the XML column, ORDER. The service
department has specified which columns their employees are likely to query most
often. Table 4 describes these columns, which you will index:

Table 4. Side-table columns to be indexed

Column Side table

ORDER_KEY ORDER_SIDE_TAB

CUSTOMER ORDER_SIDE_TAB

PRICE PART_SIDE_TAB

DATE SHIP_SIDE_TAB

To index the side tables:

Run the following CREATE INDEX SQL commands using one of the following
methods:

Command line:

v Enter the following commands:
DB2 CREATE INDEX KEY_IDX

ON ORDER_SIDE_TAB(ORDER_KEY)

DB2 CREATE INDEX CUSTOMER_IDX
ON ORDER_SIDE_TAB(CUSTOMER)

DB2 CREATE INDEX PRICE_IDX
ON PART_SIDE_TAB(PRICE)

DB2 CREATE INDEX DATE_IDX
ON SHIP_SIDE_TAB(DATE)

v Or, run the following command file to create the indexes:
getstart_createIndex.cmd

TSO: Submit the dxxgcrin JCL job.

20 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Storing the XML document
Now that you have enabled a column that can contain the XML document and
indexed the side tables, you can store the document using the functions that the
XML Extender provides. When storing data in an XML column, you either use
default casting functions or the XML Extender UDFs. Because you will be storing an
object of the base type VARCHAR in a column of the XML UDT XMLVARCHAR,
you will use the default casting function. See “Storing data” on page 108 for more
information about the storage default casting functions and the XML
Extender-provided UDFs.

To store the XML document:

1. Open the XML document dxx_install/samples/xml/getstart.xml. Ensure that
the file path in the DOCTYPE matches the DTD ID specified in the DAD and
when inserting the DTD in the DTD repository. You can verify they match by
querying the DB2XML.DTD_REF table and by checking the DTDID element in
the DAD file. If you are using a different drive and directory structure than the
default, you might need to change the path in the DOCTYPE declaration.

2. Run the SQL INSERT command, using one of the following methods:
Command line:

v Enter the following SQL INSERT command:
DB2 INSERT INTO SALES_TAB (INVOICE_NUM, SALES_PERSON, ORDER) VALUES('123456',

'Sriram Srinivasan', DB2XML.XMLVarcharFromFile('dxx_install/samples/cmd/getstart.xml'))

v Or, run the following command file to store the document:
getstart_insertXML.cmd

TSO: Submit the dxxgixml JCL job.

To verify that the tables have been updated, run the following SELECT statements
for the tables from the command line.
DB2 SELECT * FROM SALES_TAB

DB2 SELECT * FROM PART_SIDE_TAB

DB2 SELECT * FROM ORDER_SIDE_TAB

DB2 SELECT * FROM SHIP_SIDE_TAB

Searching the XML document
You can search the XML document with a direct query against the side tables. In
this step, you will search for all orders that have a price over 2500.00.

To query the side tables:

Run the SQL SELECT statement, using one of the following methods: Command
line:

v Enter the following SQL SELECT statement:
DB2 "SELECT DISTINCT SALES_PERSON FROM SALES_TAB S, PART_SIDE_TAB P

WHERE PRICE > 2500.00 AND
S.INVOICE_NUM=P.INVOICE_NUM"

v Or, run the following command file to search the document:
getstart_queryCol.cmd

TSO: Submit the dxxgcqol JCL job.

The result set should show the names of the salespeople who sold an item that had
a price greater than 2500.00.

Chapter 2. Getting started with XML Extender 21

You have completed the getting started tutorial for storing XML documents in DB2
tables. Many of the examples in the book are based on these lessons.

Lesson: Composing an XML document
This lesson teaches you how to compose an XML document from existing DB2
data.

The scenario
You have been given the task of taking information in an existing purchase order
database, SALES_DB, and extracting requested information from it to be stored in
XML documents. The service department will then use these XML documents when
working with customer requests and complaints. The service department has
requested specific data to be included and has provided a recommended structure
for the XML documents.

Using existing data, you will compose an XML document, getstart.xml, from data
in these tables.

You will also plan and create a DAD file that maps columns from the related tables
to an XML document structure that provides a purchase order record. Because this
document is composed from multiple tables, you will create an XML collection,
associating these tables with an XML structure and a DTD. You use this DTD to
define the structure of the XML document. You can also use it to validate the
composed XML document in your applications.

The existing database data for the XML document is described in the following
tables. The column names in italics are columns that the service department has
requested in the XML document structure.

ORDER_TAB

Column name Data type

ORDER_KEY INTEGER

CUSTOMER VARCHAR(16)

CUSTOMER_NAME VARCHAR(16)

CUSTOMER_EMAIL VARCHAR(16)

PART_TAB

Column name Data type

PART_KEY INTEGER

COLOR CHAR(6)

QUANTITY INTEGER

PRICE DECIMAL(10,2)

TAX REAL

ORDER_KEY INTEGER

SHIP_TAB

Column name Data type

DATE DATE

22 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Column name Data type

MODE CHAR(6)

COMMENT VARCHAR(128)

PART_KEY INTEGER

Planning
Before you begin working with the XML Extender to compose your documents, you
need to determine the structure of the XML document and how it corresponds to the
structure of your database data. This section will provide an overview of the XML
document structure that the service department has requested, of the DTD you will
use to define the structure of the XML document, and how this document maps to
the columns that contain the data used to populate the documents.

Determining the document structure
The XML document structure takes information for a specific order from multiple
tables and creates an XML document for the order. These tables each contain
related information about the order and can be joined on their key columns. The
service department wants a document that is structured by the order number as the
top level, and then customer, part, and shipping information. They want the
document structure to be intuitive and flexible, with the elements describing the
data, rather than the structure of the document. (For example, the customer’s name
should be in an element called “customer,” rather than a paragraph.) Based on their
request, the hierarchical structure of the DTD and the XML document should be like
the one described in Figure 4 on page 24.

After you have designed the document structure, you should create a DTD to
describe the structure of the XML document. This tutorial provides an XML
document and a DTD for you. You can see the DTD file in “Appendix B. Samples”
on page 243. Using the rules of the DTD, and the hierarchical structure of the XML
document, you can map a hierarchical map of your data, as shown in Figure 4 on
page 24.

Chapter 2. Getting started with XML Extender 23

Mapping the XML document and database relationship
After you have designed the structure and created the DTD, you need to show how
the structure of the document relates to the DB2 tables that you will use to populate
the elements and attributes. You can map the hierarchical structure to specific
columns in the relational tables, as in Figure 5 on page 25.

ShipDate

+

American Motors

1998-08-19 Boat

68

=Attribute =Element =Value

<?xml encoding= ?>
<!ELEMENT Order (Customer, Part+)>
<!ATTLIST Order key CDATA #REQUIRED>
<!ELEMENT Customer (Name, Email)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Part (key,Quantity,ExtendedPrice,Tax, Shipment+)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT ExtendedPrice (#PCDATA)>
<!ELEMENT Tax (#PCDATA)>
<!ATTLIST Part color CDATA #REQUIRED>
<!ELEMENT Shipment (ShipDate, ShipMode)>
<!ELEMENT ShipDate (#PCDATA)>
<!ELEMENT ShipMode (#PCDATA)>

"ibm-1047" <?xml version="1.0"?>
<!DOCTYPE Order SYSTEM

<Order key="1">
<Customer>

<Name>American Motors</Name>
<Email>parts@am.com</Email>

</Customer>
<Part color="black ">

<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>

</Part>
</Order>

>" samples/dtd/getstart.dtd"dxx_install

…

DTD Raw data

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02
ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure 4. The hierarchical structure of the DTD and XML document

24 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

This figure uses nodes to identify elements, attributes, and text within the XML
document structure. These nodes are used in the DAD file and are explained more
fully in later steps.

Use this relationship description to create DAD files that define the relationship
between the relational data and the XML document structure.

To create the XML collection DAD file, you need to understand how the XML
document corresponds to the database structure, as described in Figure 5, so that
you can describe from what tables and columns the XML document structure
derives data for elements and attributes. You will use this information to create the
DAD file for the XML collection.

Getting started scripts and samples
For this tutorial, we provide a set of scripts for you to use to set up your
environment. These scripts are in the dxx_install/samples/cmd directory (where
dxx_install is the directory in USS where the sample DTD, DAD, and XML files are
located).

Table 5 on page 26 lists the USS and JCL samples that are provided to complete
the getting started tasks.

root_node

attribute_node
Color

text_node

text_node

text_node text_node

text_node

price

date mode

attribute_node
Key

tax

element_node
Order

element_node
Part

element_node
ExtendedPrice

element_node
Tax

element_node
Key

element_node
Shipment

element_node
ShipDate

element_node
ShipMode

text_node text_node
customer_name customer_email

element_node
Customer

element_node
Name

element_node
Email

part_key

color

order_key

Names of columns in DB2 tables

text_node

element_node
Quantity

quantity

Figure 5. XML document mapped to relational table columns

Chapter 2. Getting started with XML Extender 25

Table 5. List of the XML collection lesson samples

Role Description USS command files JCL file

administrator Creates and
populates the tables
used for the lesson

Getstart_db.cmd dxxgdb

administrator Binds and enables
the database

Getstart_prep.cmd dxxgprep

administrator Run a stored
procedure to
compose an XML
document

Getstart_stp.cmd dxxgstp

administrator Exports a generated
XML document from
DB2

Getstart_export.cmd dxxgexml

administrator Cleanup the
environment

Getstart_clean.cmd dxxgclen

Setting up the lesson environment
In this section, you create the database and tables used for the sample data.

Creating the database
In this section, you use a command to set up the database. This command creates
a sample database, connects to it, creates the tables to hold data, and then inserts
the data.

Important: If you have completed the XML column lesson and have not cleaned up
your environment, you might be able to skip this step. Check to see if you have a
SALES_DB database.

To create the database:

1. Ensure that the database server has been enabled by the DB2 administrator.
See “Initializing DB2 XML Extender” on page 39 to learn how to enable the
server.

2. Change to the dxx_install/samples/cmd directory, where dxx_install is the
directory in USS where the sample DTD, DAD, and XML files are located. The
sample files contain references to files that use absolute path names. Check the
sample files and change these values for your directory paths.

3. Run the create database command file, using one of the following methods:

odb2 command line: Enter the following command:
getstart_db.cmd

See “Choosing a method to run the Getting Started lessons” on page 12 to learn
how to start the odb2 command line.

TSO: Submit the dxxgdb JCL job.

Creating the XML collection: preparing the DAD file
Because the data already exists in multiple tables, you will create an XML
collection, which associates the tables with the XML document. To create an XML
collection, you define the collection by preparing a DAD file.

26 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

In “Planning” on page 23 you determined which columns are in the relational
database where the data exists, and how the data from the tables will be structured
in an XML document. In this section, you create the mapping scheme in the DAD
file that specifies the relationship between the tables and the structure of the XML
document.

In the following steps, elements in the DAD are referred to as tags and the
elements of your XML document structure are referred to as elements. A sample of
a DAD file similar to the one you will create is in
dxx_install/samples/dad/getstart_xcollection.dad. It has some minor
differences from the file generated in the following steps. If you use it for the lesson,
note that the file paths might be different than in your environment and you might
need to update the sample file.

To create the DAD file for composing an XML document:

1. From the dxx_install/samples/cmd directory, open a text editor and create a
file called getstart_xcollection.dad.

2. Create the DAD header, using the following text:
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "dxx_install/dtd/dad.dtd">

Change dxx_install to the XML Extender home directory.

3. Insert the <DAD></DAD> tags. All other tags are located inside these tags.

4. Specify <validation> </validation> tags to indicate whether the XML Extender
validates the XML document structure when you insert a DTD into the DTD
repository table. This lesson does not require a DTD and the value is NO.
<validation>NO</validation>

The value of the <validation> tags must be uppercase.

5. Use the <Xcollection></Xcollection> tags to define the access and storage
method as XML collection. The access and storage methods define that the
XML data is stored in a collection of DB2 tables.
<Xcollection>
</Xcollection>

6. After the <Xcollection> tag, provide an SQL statement to specify the tables and
columns used for the XML collection. This method is called SQL mapping and
is one of two ways to map relational data to the XML document structure. (See
“Types of mapping schemes” on page 55 to learn more about mapping
schemes.) Enter the following statement:
<Xcollection
<SQL_stmt>

SELECT o.order_key, customer_name, customer_email, p.part_key, color, quantity,
price, tax, ship_id, date, mode from order_tab o, part_tab p,
table (select db2xml.generate_unique()
as ship_id, date, mode, part_key from ship_tab) s

WHERE o.order_key = 1 and
p.price > 20000 and
p.order_key = o.order_key and
s.part_key = p.part_key

ORDER BY order_key, part_key, ship_id
</SQL_stmt>
</Xcollection>

This SQL statement uses the following guidelines when using SQL mapping.
Refer to Figure 5 on page 25 for the document structure.

Chapter 2. Getting started with XML Extender 27

v Columns are specified in top-down order, by the hierarchy of the XML
document structure. For example, the columns for the order and customer
elements are first, the part element are second, and the shipment are third.

v The columns for a repeating section, or non-repeating section, of the
template that requires data from the database are grouped together. Each
group has an object ID column: ORDER_KEY, PART_KEY, and SHIP_ID.

v The object ID column is the first column in each group. For example,
O.ORDER_KEY precedes the columns related to the key attribute and
p.PART_KEY precedes the columns for the Part element.

v The SHIP_TAB table does not have a single key conditional column, and
therefore, the generate_unique user-defined function is used to generate the
SHIP_ID column.

v The object ID columns are then listed in top-down order in an ORDER BY
statements. The columns in ORDER BY should not be qualified by any
schema and table name and should match the column names in the
SELECT clause.

See “Mapping scheme requirements” on page 57 for requirements when writing
an SQL statement.

7. Add the following prolog information to be used in the composed XML
document:
<prolog>?xml version="1.0"?</prolog>

This exact text is required for all DAD files.

8. Add the <doctype></doctype> tags to be used in the XML document you are
composing. The <doctype> tag contains the path to the DTD stored on the
client.
<doctype>!DOCTYPE Order SYSTEM "dxx_install/samples/dtd/getstart.dtd"</doctype>

9. Define the root element of the XML document using the
<root_node></root_node> tags. Inside the root_node, you specify the elements
and attributes that make up the XML document.

10. Map the XML document structure to the DB2 relational table structure using
the following three types of nodes:

element_node
Specifies the element in the XML document. Element_nodes can have
child element_nodes.

attribute_node
Specifies the attribute of an element in the XML document.

text_node
Specifies the text content of the element and the column data in a
relational table for bottom-level element_nodes.

See “The DAD file” on page 53 for more information about these nodes.
Figure 5 on page 25 shows the hierarchical structure of the XML document and
the DB2 table columns, and indicates what kinds of nodes are used. The
shaded boxes indicate the DB2 table column names from which the data will
be extracted to compose the XML document.

The following steps have you add each type of node, one type at a time.

a. Define an <element_node> tag for each element in the XML document.
<root_node>
<element_node name="Order">
<element_node name="Customer">

28 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

<element_node name="Name">
</element_node>
<element_node name="Email">
</element_node>

</element_node>
<element_node name="Part">

<element_node name="key">
</element_node>
<element_node name="Quantity">
</element_node>
<element_node name="ExtendedPrice">
</element_node>
<element_node name="Tax">
</element_node>
<element_node name="Shipment" multi_occurrence="YES">

<element_node name="ShipDate">
</element_node>
<element_node name="ShipMode">
</element_node>

</element_node> <!-- end Shipment -->
</element_node> <!-- end Part -->

</element_node> <!-- end Order -->
</root_node>

Note that the <Shipment> child element has an attribute of
multi_occurrence=″YES″. This attribute is used for elements without an
attribute, that are repeated in the document. The <Part> element does not
use the multi-occurrence attribute because it has an attribute of color,
which makes it unique.

b. Define an <attribute_node> tag for each attribute in your XML document.
These attributes are nested in their element_node. The added
attribute_nodes are highlighted in bold:
<root_node>
<element_node name="Order">

<attribute_node name="key">
</attribute_node>
<element_node name="Customer">

<element_node name="Name">
</element_node>
<element_node names"Email">
</element_node>

</element_node>
<element_node name="Part">

<attribute_node name="color">
</attribute_node>
<element_node name="key">
</element_node>
<element_node name="Quantity">
</element_node>

...

</element_node> <!-- end Part -->
</element_node> <!-- end Order -->
</root_node>

c. For each bottom-level element_node, define <text_node> tags, indicating
that the XML element contains character data to be extracted from DB2
when composing the document.
<root_node>
<element_node name="Order">
<attribute_node name="key">
</attribute_node>
<element_node name="Customer">

Chapter 2. Getting started with XML Extender 29

<element_node name="Name">
<text_node>
</text_node>

</element_node>
<element_node name="Email">

<text_node>
</text_node>

</element_node>
</element_node>
<element_node name="Part">
<attribute_node name="color">
</attribute_node>
<element_node name="key">

<text_node>
</text_node>

</element_node>
<element_node name="Quantity">

<text_node>
</text_node>

</element_node>
<element_node name="ExtendedPrice">

<text_node>
</text_node>

</element_node>
<element_node name="Tax">

<text_node>
</text_node>

</element_node>
<element_node name="Shipment" multi-occurence="YES">
<element_node name="ShipDate">

<text_node>
</text_node>

</element_node>
<element_node name="ShipMode">

<text_node>
</text_node>

</element_node>
</element_node> <!-- end Shipment -->

</element_node> <!-- end Part -->
</element_node> <!-- end Order -->
</root_node>

d. For each bottom-level element_node, define a <column/> tag. These tags
specify from which column to extract data when composing the XML
document and are typically inside the <attribute_node> or the <text_node>
tags. Remember, the columns defined here must be in the <SQL_stmt>
SELECT clause.
<root_node>
<element_node name="Order">
<attribute_node name="key">

<column name="order_key"/>
</attribute_node>
<element_node name="Customer">
<element_node name="Name">
<text_node>

<column name="customer_name"/>
</text_node>

</element_node>
<element_node name="Email">
<text_node>

<column name="customer_email"/>
</text_node>
</element_node>

</element_node>
<element_node name="Part">
<attribute_node name="color">

30 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

<column name="color"/>
</attribute_node>
<element_node name="key">
<text_node>

<column name="part_key"/>
</text_node>

<element_node name="Quantity">
<text_node>

<column name="quantity"/>
</text_node>

</element_node>
<element_node name="ExtendedPrice">
<text_node>

<column name="price"/>
</text_node>

</element_node>
<element_node name="Tax">
<text_node>

<column name="tax"/>
</text_node>

</element_node>
<element_node name="Shipment" multi-occurence="YES">
<element_node name="ShipDate">
<text_node>

<column name="date"/>
</text_node>

</element_node>
<element_node name="ShipMode">
<text_node>

<column name="mode"/>
</text_node>

</element_node>
</element_node> <!-- end Shipment -->

</element_node> <!-- end Part -->
</element_node> <!-- end Order -->
</root_node>

11. Ensure that you have an ending </root_node> tag after the last
</element_node> tag.

12. Ensure that you have an ending </Xcollection> tag after the </root_node> tag.

13. Ensure that you have an ending </DAD> tag after the </Xcollection> tag.

14. Save the file as getstart_xcollection.dad

You can compare the file you have just created with the sample file
dxx_install/samples/dad/getstart_xcollection.dad. This file is a working copy of
the DAD file required to compose the XML document. The sample file contains
location paths and file path names that might need to be changed to match your
environment in order to be run successfully.

In your application, if you will use an XML collection frequently to compose
documents, you can define a collection name by enabling the collection. Enabling
the collection registers it in the XML_USAGE table and helps improve performance
when you specify the collection name (rather than the DAD file name) when running
store procedures. In these lessons, you will not enable the collection. To learn more
about enabling collections, see “Enabling XML collections” on page 101.

Composing the XML document
In this step, you use the dxxGenXML() stored procedure to compose the XML
document specified by the DAD file. This stored procedure returns the document as
an XMLVARCHAR UDT.

Chapter 2. Getting started with XML Extender 31

To compose the XML document:

1. Use one of the following methods to call the dxxGenXML stored procedure:

Command line: Enter the following command:
getstart_stp.cmd

TSO: Submit the dxxgstp JCL job.

The stored procedure composes the XML document and stores it in the
RESULT_TAB table.

You can see samples of stored procedures that can be used in this step in the
following files:

v dxx_install/samples/c/tests2x.sqc shows how to call the stored procedure
using embedded SQL and generates the texts2x executable file, which is
used by the getstart_stp.cmd.

v dxx_install/samples/cli/sql2xml.c shows how to call the stored procedure
using the CLI.

2. Export the XML document from the table to a file using one of the following
methods to call the XML Extender retrieval function, Content():

Command line:

v Enter the following commands:
DB2 CONNECT TO SALES_DB

DB2 SELECT DB2XML.Content(DB2XML.xmlVarchar(doc),
'dxx_install/samples/cmd/getstart.xml') FROM RESULT_TAB

v Or, run the following command file to export the file:
getstart_exportXML.cmd

TSO: Submit the dxxgexml JCL job.

Tip: This lesson teaches you how to generate one or more composed XML
documents using DB2 stored procedure’s result set feature. Using a result set
allows you to fetch multiple rows to generate more than one document. As you
generate each document, you can export it to a file. This method is the simplest
way to demonstrate using result sets. For more efficient ways of fetching data see
the CLI examples in the source filedxx_install/samples/cli.

Cleaning up the tutorial environment
If you want to clean up the tutorial environment, you can run one of the provided
scripts or enter the commands from the command line to:

v Disable the XML column, ORDER

v Drop tables created in the tutorial

v Delete the DTD from the DTD reference table

They do not disable or drop the SALES_DB database; the database is still available
for use with XML Extender. You might receive error messages if you have not
completed both lessons in this chapter. You can ignore these errors.

To clean up the tutorial environment:

Run the cleanup command file, using one of the following methods:

v Command line: Enter the following command:

32 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|

getstart_clean.cmd

TSO: Submit the dxxgeclen JCL job.

v If you want to disable the database, you can run the following XML Extender
command from the command line:
dxxadm disable_server SALES_DB

This command drops the administration control tables DTD_REF and
XML_USAGE, as well as removes the user-defined types and functions provided
by XML Extender.

Chapter 2. Getting started with XML Extender 33

34 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Part 2. Administration

This part describes how to perform administration tasks for the XML Extender.

© Copyright IBM Corp. 2000, 2001 35

36 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 3. Preparing to use the XML Extender: administration

This chapter describes the requirements for setting up and planning for the XML
Extender administration tasks.

Set-up requirements
The following sections describe set-up requirements for the XML Extender.

Software requirements
To use the XML Extender, you must have the following software installed.

v DB2 Universal Database for OS/390 and z/OS Version 7

v XML Toolkit for OS/390 and z/OS V1R2

v UNIX System Services set up; see OS/390 UNIX System Services Planning.

v Optional: odb2 command line to run the supplied samples in UNIX System
Services (USS). Download the odb2 command line from the IBM OS/390 UNIX
System Services Tools and Toys Web site. Go to:
http://www.s390.ibm.com/products/oe/ and select Tools and Toys. See also the
XML Extender Web site for new about changes to access of this product:
http://www.ibm.com/software/data/db2/extenders/xmlext

v To run the XML Extender administration wizard, the following software is required
on a Windows or supported UNIX operating system server:

– XML Extender administration wizard, downloaded to the client operating
system

– DB2 Universal Database Connect Personal or Enterprise Edition

– Java Development Kit (JDK) 1.1.7 or higher

Before using the XML Extender, you must have the following z/OS and OS/390
options installed and set up:

v Workload Manager (WLM)

v Recoverable Resource Services (RRS)

v USS and Hierarchical File System (HFS)

Installation requirements
See the Program Directory for IBM Database 2 Universal Database Server for
OS/390 with National Language Versions for information about software installation
for the XML Extender for OS/390 and z/OS.

Table 6 lists the data sets that are installed with the XML Extender.

Table 6. The XML Extender data sets

data set Description

SDXXADM The XML Extender Administration Wizard, for
execution on UNIX or Windows

SDXXC C sample invoker source programs:

v INSERT {alias of DXXINS}

v RETRIEVE {alias of DXXRET}

v SHRED {alias of DXXSHR}

v TESTS2X {alias of DXXTES}

© Copyright IBM Corp. 2000, 2001 37

Table 6. The XML Extender data sets (continued)

data set Description

SDXXCLI CLI samples

Not currently available. Will be supported for
General Availability.

SDXXCLP CLP samples for use with the odb2 command
line for running the Getting Started lessons,
from USS

SDXXCMD CMD samples for use with the odb2
command line for running the Getting Started
lessons, from USS

SDXXDAD The DAD files used in the Getting Started
lessons

SDXXDBRM The DBRMs for the XML Extender UDFs and
stored procedures and the C sample invokers

SDXXDTD The DTD for the XML Extender DAD and the
DTD used in the Getting Started lessons

SDXXH The C header files for use in C XML Extender
invoker applications

SDXXJCL v DXXGPREP - for initializing the XML
Extender environment

v The JCL jobs to run the Getting Started
samples

SDXXJDBC JDBC samples

SDXXLOAD The XML Extender

SDXXXML The XML files used in the Getting Started
lessons

XML operating environment on OS/390 and z/OS
The following sections describe the XML operating environment for z/OS and
OS/390.

Application programming
All the XML Extender facilities supplied for application programs run in the OS/390
MVS environment as stored procedures or user-defined functions (UDFs). Some of
the UDFs that refer to the XMLFile data type, require access to an HFS system.
The DB2 XML trace file, is also written to an HFS file.

Administration environment
You can use either an administration wizard from Windows or UNIX client, or an
OS/390 and z/OS environment to complete administration tasks. This section
describes the OS/390 and z/OS operating environment. See “Starting the
administration wizard” on page 65 to learn how to use the administration wizard.

When performing administration tasks from the OS/390 and z/OS environment, you
use the USS command line and HFS, or the MVS/TSO environment. The XML
Extender installation creates sample files and executable files in MVS partitioned
data sets. After these partitioned data sets are installed, it is recommended that you
create HFS files in your USS environment by running the DXXGPREP JCL job.
DXXGPREP runs essential bind steps, creates sample DB2 tables, and copies
sample files to HFS. See “Initializing the XML Extender environment using

38 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

DXXGPREP” to learn what DXXGPREP does and how you should edit it before
executing the job. Table 7 describes how the two OS/390 and z/OS environments
are related.

Table 7. z/OS and OS/390 operating environment

Environment MVS/TSO USS

Sample files DAD, DTD, and XML files, stored
in partitioned data sets containing
the sample files. Copied to USS
by DXXGPREfP

DAD, DTD, and XML files are
stored under the dxx_install
directory.

v dxx_install/dtd/dad.dtd

v dxx_install/samples/dtd/*.*

v dxx_install/samples/dad/*.*

v dxx_install/samples/xml/*.*

DXXGPREP copies sample files
to USS using OPUT and MKDIR.

Program executable
files

Stored in SDXXLOAD PDS,
containing executable load
modules for XML Extender

Turn on the sticky bit in HFS for
the MVS/TSO SDXXLOAD file, to
be able to access executable
LOAD modules in this file from
the USS command line.

Command scripts Stored in SDXXJCL PDS,
containing sample command JCL
jobs executed in TSO batch

Command scripts are stored
under the dxx_install directory.
DXXGPREP copies sample files
to USS from SDXXCMD PDS,
using MKDIR and OPUT.

Command
environment

MVS batch or TSO batch USS command line and odb2
command line

After the USS environment is initialized, you can use either the USS command line
and odb2 command line, or MVS batch and TSO batch to perform administration
tasks.

MVS batch and TSO batch
Running the sample JCL will execute the sample programs in the MVS/TSO
environment. The JCL accesses the sample files stored in the USS file
system (DAD, DTDs, XML documents).

USS command line and odb2 command line
You can run command scripts used for the getting started lessons from the
odb2 command line. These scripts can be used as models for running
administration commands in your application environment. To run programs
from the odb2 command line, you need to:

v Download and install the odb2 command line.

v Turn on the sticky bit in HFS for the MVS/TSO SDXXLOAD file, so that
SDXXLOAD is accessible to your USS environment.

Initializing DB2 XML Extender
The following sections describe the initialization procedures required to use the DB2
XML Extender.

Initializing the XML Extender environment using DXXGPREP
DXXGPREP is a JCL job script used to initialize the database server for XML. This
task is performed by a DB2 administrator for each DB2 system where you want to
use the XML Extender.

Chapter 3. Preparing to use the XML Extender: administration 39

– Collection DB2XML_RUN

– Plan DXXADM, INSERT, RETRIEVE, SHRED, and TESTS2X

v Enables the DB2 system to XML specifying the following options:
ENABLE_SERVER -a V71A using XMLLOBTS,XMLLOBT2 wlm environment WLMENV1

Important: The ENABLE_SERVER command must be run by SYSADM or
DB2XML or users with equivalent authority. See “enable_server” on page 143 for
the full syntax before submitting DXXGPREP.

After editing and running DXXGPREP, it is possible to work through the Getting
Started lessons in this book, to try the samples, provided you have set up the
following OS/390 and z/OS options:

v The WLM environment

v The RRS environment

v The HFS file system

You can use either JCL or the USS command line to run the Getting Started
samples.

Initializing the XML Extender administration wizard
If you want to use the XML Extender administration wizard from a Windows or UNIX
environment, complete the following initialization steps:

v Download the file DXXADMIN in JCL PDS (SDXXADM) to your PC.

v Unzip the packaging using a zip tool, such as PKUNZIP.

You can use FTP to download the file, but you must remember to specify BIN.

A Java jar file is extracted, which runs the XML Extender administration wizard.

v Set up the jar files and CLASSPATH as described in “Setting up the
administration wizard” on page 65.

v Ensure that you have the following applications installed:

– DB2 Connect Personal or Enterprise Edition

– JDK 1.1.7 or higher

Workload management considerations
A Work Load Management (WLM) Application Environment is a set of parameters
describing how to create address spaces which can run a particular kind of work.
The XML Extender uses WLM Application Environments for user-defined functions
and for stored procedures. DB2 allows various options for stored procedures, but to
attain all DB2 functionality that is required, XML Extender UDFs and stored
procedures must use WLM environments.

After the XML Extender is installed, you need to establish WLM environments for
the UDFs and stored procedures. When you enable a database server for the XML
Extender, you specify the name application environment that DB2 should use for
XML Extender UDFs and stored procedures. You can enable the server by using
the DXXADM ENABLE_SERVER command (see “enable_server” on page 143), by
using the administration wizard, or by running the DXXGPREP JCL job file as
described in “Initializing the XML Extender environment using DXXGPREP” on
page 39. See the DB2 for OS/390 and z/OS library documentation installation and
administration books for additional installation, setup, and troubleshooting
information. Each WLM environment is associated with a JCL procedure that starts
an address space for executing the XML Extender UDFs or stored procedures.

Chapter 3. Preparing to use the XML Extender: administration 41

You need to decide how many WLM environments to establish. You also need to
decide what performance objectives to specify for these environments.

The number of WLM environments
You can establish multiple WLM environments for running XML Extender UDFs.
When you enable a database server for the XML Extender, you specify the WLM
environment names (see “enable_server” on page 143). If you specify a single WLM
environment name, then all of the XML Extender’s UDFs run in that WLM
environment. If you specify two WLM environment names, all stored procedures will
be run in the first WLM environment, all UDFs will be run in the second
environment. Using two separate WLM environments for stored procedures and
UDFs can improve performance.

Performance objectives for WLM environments
WLM can operate in either of two modes: compatibility mode or goal mode. In
compatibility mode, work requests are given a service class by the classification
rules in the active WLM service policy.

In goal mode, work requests are also assigned a service class by the classification
rules in the active WLM service policy. However each service class period has a
performance objective, that is, a goal. WLM raises or lowers that period’s access to
system resources as needed to meet the specified goal. For example, the goal
might be “application APPL8 should run in less than 3 seconds of elapsed time 90
percent of the time”.

Specify goal mode: In goal mode, WLM automatically starts WLM-established
address spaces for user-defined functions to help meet the service class goals that
you set. By comparison, in compatibility mode, WLM cannot automatically start a
new address space to handle high-priority requests. Instead, you must monitor the
performance of UDFs to determine how many WLM-managed address spaces are
needed, and the operator must start and stop them manually. As a result, goal
mode is recommended for running XML Extender UDFs.

Table space considerations when enabling a database server
The XML Extender stores data on DTD and XML document usage in administrative
support tables that are contained in DB2 table spaces. When you enable a
database server for the XML Extender, you specify the table spaces for CLOB
content of each of the administrative support tables. You can enable the server by
using the DXXADM ENABLE_SERVER command (see “enable_server” on
page 143), by using the administration wizard, or by running the DXXGPREP JCL
job file as described in “Initializing the XML Extender environment using
DXXGPREP” on page 39.

When you enable using the DXXGPREP job file, the table spaces are created for
you and the default names are used. You can edit the job for your application.
When you enable using the DXXADM ENABLE_SERVER command or the
administration wizard, you must create the table spaces in advanced and specify
the table spaces in the command syntax, as described in “enable_server” on
page 143 or in “Enabling a database server for XML” on page 69.

Additionally, you can also create and specify table spaces for XML column
application and side tables when you enable an XML column. You enable a column
using the DXXADM ENABLE_COLUMN command or using the administration
wizard.

42 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

The following sections describe table space considerations when you create your
own table spaces for the administration tables and for XML column application and
side tables.

Creating table spaces for the administration support tables
The table space that you specify for the administration support tables, should be in
the default database, DSNDB04, which is created as part of the setup done after
the XML Extender is installed. The default table spaces are XMLLOBTS and
XMLLOBT2. Specify a table space for the administrative support tables with a 4K
buffer pool.

Creating table spaces for XML tables
When you enable a column for the XML Extender, you can specify a table space for
side tables. The table space should be a segmented table space. Specify
LOCKSIZE ROW when you create the table space if you expect any enable or
disable operations to occur frequently, occur in complex transactions, or occur in
units of work that are not immediately committed. Specify a table space for XML
column application and side tables with a 4K buffer pool.

Security considerations
Before you use the XML Extender, you must consider the implications the XML
Extenders have on security. For example, you need to determine what controls (if
any) to put in place for access to XML column data. You also need to determine
whether you want to restrict privileges that the XML Extender automatically grant to
users.

Access to XML columns in tables
XML documents stored as columns in a DB2 database are afforded the same
security protection as traditional numeric and character data. Users must have the
required privilege to select objects from, insert objects into, update objects in, or
delete objects from a DB2 database. For example, to select objects from a user
table, a user must have SELECT privilege on the table. For information about DB2
security, see the DB2 Universal Database for OS/390 and z/OS Administration
Guide, Version 7.

Access to content in files
The XML documents, DADs, and DTDs of XMLFile type, that you store in a table,
can point to content stored in files including external entities or DTDs. The files can
be in a partitioned data set or in file system that is compatible with OS/390 and
z/OS USS, for example, HFS.

When an administrator enables a database server for the XML Extender, the
administrator can specify a SECURITY option (see “enable_server” on page 143).
The option indicates how UDFs that store, retrieve, and update objects interact with
an external security product such as RACF to control access to files. The
administrator can specify SECURITY USER or SECURITY DB2.

If SECURITY USER is specified, the XML Extender UDF execution environment is
assigned the primary authorization ID of the process that called the function. This is
the ID that is used for non-SQL requests. The primary authorization ID of the
process is used rather than other DB2 authorization IDs, such as the authorization
ID of the package or plan owner. The primary authorization ID is subject to
distributed database security operations such as inbound authorization ID
translation.

If SECURITY DB2 is specified, the XML Extender UDFs access files using the
authorization ID associated with the WLM environment address spaces that are
established for running the UDFs. In this case, all XML Extender users have access
to the same files. If you use two WLM environments, then a separate ID can be
assigned to each environment.

When a UDF attempts to access a file, USS calls an external security product such
as Security Server (RACF) to get the user ID (UID) and group ID (GID) associated
with the UDF. For SECURITY USER, the UID and GID are those that are assigned
to the authorization ID in effect for the process that calls the UDF. For SECURITY
DB2, the UID and GID are those that are assigned to the authorization ID of the
WLM application environment address spaces for the UDF. The system then
compares the UID and GID assignments to the user, group, and other permission
bits in the file’s directory entry. The file can be accessed only if the user’s UID and
GID are compatible with the permissions in the file’s directory entry.

SECURITY USER gives greater control over file access: If you specify
SECURITY USER, file system checks are made against the primary authorization
ID of the process that calls the UDF. Because you can assign different UIDs and
GIDs to different users, you can control access to files on a user-by-user or
group-by group basis. By comparison, SECURITY DB2 gives you one level of
control because all UDFs run with the same UID and GID, that is, the UID and GID
assigned to the WLM environment address spaces. For this reason, SECURITY
DB2 is a good choice for applications where file read protection is not required, for
example Web applications.

SECURITY DB2 requires less administration: If you specify SECURITY DB2, you
need to assign an authorization ID, UID, and GID to the WLM address spaces for
the XML Extender UDFs. By comparison, if you specify SECURITY USER, you
must assign a UID and GID for every legitimate user of the files. In both cases, you
need to coordinate the UID and GID assignments with the file system permissions.

SECURITY DB2 results in better UDF performance: This is because the
individual nature of performing the security checks for SECURITY USER incurs
more overhead in the database server than SECURITY DB2.

For more information about security, see the XML Extender section of the Program
Directory for IBM Database 2 Universal Database Server for OS/390 with National
Language Versions.

EXECUTE authority
When a database server is enabled for the XML Extender, use privilege on the XML
Extender’s UDT (and related CAST functions) and use privilege on all of its UDFs
and stored procedures are granted to PUBLIC. You can revoke the use privilege on
the UDT and UDFs that was granted to PUBLIC, and grant the privilege to use the
UDT and UDFs to specific authorization IDs. This does not affect the way the XML
Extender operates. However maintaining authority lists could become tedious;
consider controlling access to files that are used (or potentially used) by XML
Extender UDFs. In effect, this method limits the ability to successfully retrieve
objects of the associated user-defined type to specific authorization IDs.

This has implications for external security: If you specify SECURITY DB2, UDF
access to files is controlled by authorization ID, UID, and GID specifications made
for the WLM environment address spaces in which the UDFs run.

44 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Authority to administer the XML Extender
Some XML Extender-related administrative operations require special authority.

Enable and disable server
It is recommended that an administrator have SYSADM to DBADM
authority for the user ID DB2XML to enable or disable a server.

Enable and disable column
An administrator must have table owner privileges on the table containing
the column to be enabled, and must have privileges for buffer pools and
table spaces.

Enable and disable collection
An administrator must have table owner privileges for all existing tables in
the collection and use on the buffer pools and table spaces.

Composition and decomposition
An application developer needs access to the following tables:

Composition

v DTD_REF (to access the DTD)

v XML_USAGE (to access the DAD files)

v SELECT on all tables referenced

v INSERT on the result table

Decomposition

v DTD_REF (to access the DTD)

v XML_USAGE (to access the DAD files)

v INSERT on all tables to be modified

v UPDATE on all tables to be modified

v SELECT on any table referenced in the DAD file

v Access to the DB2 catalog

Backup and recovery considerations
You need to back up the DSNDB04 database, which contains the tables spaces for
the administration support tables used by the XML Extender. The administration
support tables, XML_USAGE and DTD_REF, are required for many XML Extender
activities; they are essential and should always be backed up. For further
information about the XML Extender initialization, see “Initializing the XML Extender
environment using DXXGPREP” on page 39.

Administration tools
The XML Extender provides several methods for administration: the XML Extender
administration command and the XML Extender stored procedures. You can also
use the XML Extender administration wizard, if you have the XML Extender installed
on a client workstation.

v The administration command, dxxadm, provides subcommands for the various
administration tasks. Use of this command is described in the administration
tasks in “Chapter 5. Managing the database server” on page 69 and in
“Chapter 10. XML Extender administration command: DXXADM” on page 141.

v The administration stored procedures also provide options for various
administration tasks. These stored procedures are described in “Administration
stored procedures” on page 191.

Chapter 3. Preparing to use the XML Extender: administration 45

v The XML Extender administration wizard prompts you through the administration
tasks. You can use it from a client workstation to preform these tasks. Use of this
tool is described in “Chapter 5. Managing the database server” on page 69.

Administration planning
When planning an application that uses XML documents, you first need to make the
following design decisions:

v If you will be composing XML documents from data in the database

v If you will be storing existing XML documents, and if you want them to be stored
as intact XML documents in a column or decomposed into regular DB2 data

After you make these decisions, you can then plan the rest of your administration
tasks:

v Whether to validate your XML documents

v Whether to index XML column data for fast search and retrieval

v How to map the structure of the XML document to DB2 relational tables

How you use the XML Extender depends on what your application requires. As
indicated in “Chapter 1. Introduction to the XML Extender” on page 3, you can
compose XML documents from existing DB2 data and store XML documents in
DB2, either as intact documents or as DB2 data. Each of these storage and access
methods have different planning requirements. The following sections discuss each
of these planning considerations.

Choosing an access and storage method
The XML Extender provides two access and storage methods to use DB2 as an
XML repository: XML column and XML collection. You first need to decide which of
the methods best matches your application needs for accessing and manipulating
XML data.

XML column
Stores and retrieves entire XML documents as DB2 column data. The XML
data is represented by an XML column.

XML collection
Decomposes XML documents into a collection of relational tables or
composes XML documents from a collection of relational tables.

The nature of your application determines the type of access and storage method to
use and how to structure your XML data. The following scenarios describe
situations in which each access and storage method is the most appropriate.

When to use XML columns
Use XML columns in the following situations:

v The XML documents already exist or come from some external source and you
prefer to store the documents in the native XML format. You want to store them
in DB2 for integrity and for archival and auditing purposes.

v The XML documents are generally read, but not updated.

v You want to use file name data types to store the XML documents external to
DB2 in the local or remote file system and to use DB2 for management and
search operations.

v You need range search based on the values of XML elements or attributes, and
you know what elements or attributes will frequently be the search arguments.

46 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

v The documents have elements with large text blocks and you want to use the
DB2 Text Extender for structural text search while keeping the entire documents
intact.

When to use XML collections
Use XML collections in the following situations:

v You have data in your existing relational tables and you want to compose XML
documents based on a certain DTD.

v You have XML documents that need to be stored with collections of data that
map well to relational tables.

v You want to create different views of your relational data using different mapping
schemes.

v You have XML documents that come from other data sources. You care about
the data but not the tags, and want to store pure data in your database. You
want the flexibility to decide whether to store the data in some existing tables or
in new tables.

v A small subset of your XML documents needs to be updated often, and update
performance is critical.

v You need to store the data of entire incoming XML documents but often only
want to retrieve a subset of them.

You use the document access definition (DAD) file to associate XML data with DB2
tables through these two access and storage methods. Figure 6 shows how the
DAD specifies the access and storage methods.

<?xml?>
<!DOCTYPE…>

<Order key="1">

<?xml?>
<!DOCTYPE…>

<Order key="1">

…
…

…
…

…
…

</Order>

</Order>

XML document

XML document

DB2

DB2

DAD

DAD

<Xcolumn>
<table>

<column>
<column>
<column>

</table>
</Xcolumn>

<Xcollection>
<table>

<column>
</table>

<table>
<column>

</table>
</Xcollection>

Figure 6. The DAD file maps the XML document structure to DB2 and specifies the access
and storage method.

Chapter 3. Preparing to use the XML Extender: administration 47

The DAD file is an important part of administering the XML Extender. It defines the
location of key files like the DTD, and specifies how the XML document structure
relates to your DB2 data. Most important, it defines the access and storage
methods you use in your application.

Planning for XML columns
Before you begin working with the XML Extender to store your documents, you
need to understand the structure of the XML document so that you can determine
how to index elements and attributes in the document. When planning how to index
the document, you need to determine:

v The XML user-defined type in which you will store the XML document

v The XML elements and attributes that your application will frequently search, so
that their content can be stored in side tables and indexed to improve
performance

v Whether or not to validate XML documents in the column with a DTD

v The structure of the side tables and how they will be indexed

Determining the XML data type for the XML column
The XML Extender provides XML user defined types in which you define a column
to hold XML documents. These data types are described in Table 8.

Table 8. The XML Extender UDTs

User-defined type column Source data type Usage description

XMLVARCHAR VARCHAR(varchar_len) Stores an entire XML
document as VARCHAR
inside DB2. Used for small
documents stored in DB2.

XMLCLOB CLOB(clob_len) Stores an entire XML
document as CLOB inside
DB2. Used for large
documents stored in DB2.

XMLFILE VARCHAR(1024) Stores the file name of an
XML document in DB2, and
stores the XML document in a
file local to the DB2 server.
Used for documents stored
outside DB2.

Determining elements and attributes to be indexed
When you understand the XML document structure and the needs of the
application, you can determine which elements and attributes to be searched.
These are usally the elements and attributes that will be searched or extracted most
frequently, or those that will be the most expensive to query. The location paths of
each element and attribute can be mapped to relational tables (side tables) that
contain the content of these objects, in the DAD file for XML columns. The side
tables are then indexed.

For example, Table 9 on page 49 shows an example of types of data and location
paths of element and attribute from the Getting Started scenario for XML columns.
The data was specified as information to be frequently searched and the location
paths point to elements and attributes that contain the data. These location paths
can then be mapped to side tables in the DAD file.

48 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|
|

Table 9. Elements and attributes to be searched

Data Location path

order key /Order/@key

customer /Order/Customer/Name

price /Order/Part/ExtendedPrice

shipping date /Order/Part/Shipment/ShipDate

Planning side tables
Side tables are DB2 subtables used to extract the content of an XML document that
will be searched frequently. The location path of the element or attribute is mapped
to a table and column, indexed, and used for searches. When the XML document is
updated in the application table, the values in the side tables are automatically
updated.

Figure 7 shows an XML column with side tables.

When planning for side tables, you must consider how to organize the tables, how
many tables to create, and whether to create a default view for the side tables.
These decisions are partly based on several issues: whether elements and
attributes can occur multiple times, and the requirements for query performance.
Additionally, do not plan to update the side tables in any way; they will be
automatically updated when the document is updated in the XML column.

Multiple occurrence: When using multiple occurring location paths, consider the
following issues in your planning:

v For elements or attributes in an XML document that have multiple occurrences,
you must create a separate side table for each XML element or attribute with
multiple occurrences, due to the complex structure of XML documents. This
means that elements or attributes that have multiple occurring location paths
must be mapped to a table with only one column, the column for that location
path. You cannot have any other columns in the table, whether or not they have
multiple occurrence.

<?xml?>
<!DOCTYPE…>

<Order key="1">

…

</Order>

XML document

Side
tables

DB2

XML column
with side tables

XML
CLOB

Figure 7. An XML column with side tables

Chapter 3. Preparing to use the XML Extender: administration 49

v When a document has multiple occurring location paths, XML Extender will add a
column DXX_SEQNO of type INTEGER in each side table to keep track of the
order of elements that occur more than once. With DXX_SEQNO, you can
retrieve a list of the elements using the same order as the original XML
document by specifying ORDER BY DXX_SEQNO in an SQL query.

Default views and query performance: When you enable an XML column, you
can specify a default, read-only view that joins the application table with the side
tables using a unique ID, called the ROOT ID. With the default view, you can
search XML documents by querying the side tables. For example, if you have the
application table SALES_TAB, and the side tables ORDER_TAB, PART_TAB and
SHIP_TAB:
SELECT sales_person FROM sales_order_view

WHERE price > 2500.00

The SQL statement returns the names of sales people in SALES_TAB who have
orders stored in the column ORDER, and where the PRICE is greater than 2500.00.

The advantage of querying the default view is that it provides a virtual single view of
the application table and side tables. However, the more side tables that are
created, the more expensive the query. Therefore, creating the default view is only
recommended when the total number of side-table columns is small. Applications
can create their own views, joining the important side table columns.

Indexes for XML column data
An important planning decision is whether to index your XML column document.
This decision should be made based on how often you need to access the data and
how critical performance is during structural searches.

When using XML columns, which contain entire XML documents, you can create
side tables to contain columns of XML element or attribute values, then create
indexes on these columns. You must determine for which elements and attributes
you need to create the index.

XML column indexing allows frequently queried data of general data types, such as
integer, decimal, or date, to be indexed using the native DB2 index support from the
database engine. The XML Extender extracts the values of XML elements or
attributes from XML documents and stores them in the side tables, allowing you to
create indexes on these side tables. You can specify each column of a side table
with a location path that identifies an XML element or attribute and an SQL data
type.

The XML Extender automatically populates the side table when you store XML
documents in the XML column.

For fast search, create indexes on these columns using the DB2 B-tree indexing
technology. The methods that are used to create an index vary on different
operating systems, and the XML Extender supports these methods.

Considerations:

v For elements or attributes in an XML document that have multiple occurrences,
you must create a separate side table for each XML element or attribute with
multiple occurrences due to the complex structure of XML documents.

v You can create multiple indexes on an XML column.

v You can associate side tables with the application table using the ROOT ID, the
column name of the primary key in the application table and a unique identifier

50 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

that associates all side tables with the application table. You can decide whether
you want the primary key of the application table to be the ROOT ID, although it
cannot be the composite key. This method is recommended.

If the single primary key does not exist in the application table, or for some
reason you don’t want to use it, the XML Extender alters the application table to
add a column DXXROOT_ID, which stores a unique ID that is created at the
insertion time. All side tables have a DXXROOT_ID column with the unique ID. If
the primary key is used as the ROOT ID, all side tables have a column with the
same name and type as the primary key column in the application table, and the
values of the primary keys are stored.

v If you enable an XML column for the DB2 Text Extender, you can also use the
Text Extender’s structural-text feature. The Text Extender has ″section search″
support, which extends the capability of a conventional full-text search by
allowing search words to be matched within a specific document context that is
specified by location paths. The structural-text index can be used with the XML
Extender’s indexing on general SQL data types.

Validation
After you choose an access and storage method, you can determine whether to
validate the XML documents that are stored in the column. You validate XML data
using a DTD. The DTD is stored in the DTD repository, or can be stored in the file
system that the DB2 server has access to.

Recommendation: Validate XML data with a DTD, unless you are storing XML
documents for archival purposes. To validate, you need to have a DTD in the XML
Extender repository. See “Storing a DTD in the DTD repository table” on page 70 to
learn how to insert a DTD into the repository.

You can validate documents in the same XML column using different DTDs. In other
words, you can have documents that have a similar structure, with similar elements
and attributes, that call DTDs that are different. To reference multiple DTDs, use the
following guidelines:

v The system ID of the XML document in the DOCTYPE definition must specify the
DTD file using a full path name.

v You must specify YES for validation in the DAD file.

v At least one of the DTDs must be stored in the DTD_REF table. All of the DTDs
can be stored in this table.

v The DTDs should have a common structure, with differences only in
subelements.

v The DAD file should specify elements or attributes that are common to all of the
DTDs referenced by documents in that column.

Important: Make the decision whether to validate before inserting XML data into
DB2. The XML Extender does not support the validation of data that has already
been inserted into DB2.

Considerations:

v If you do not choose to validate a document, the DTD specified by the XML
document is not processed. It is important that DTDs be processed to resolve
entity values and attribute defaults even when processing document fragments
that cannot be validated.

v You do not need a DTD to store or archive XML documents.

v Validating your XML data might have a small performance impact.

Chapter 3. Preparing to use the XML Extender: administration 51

v You can use multiple DTDs, but can only index common elements and attributes.

The DAD file
For XML columns, the DAD file primarily specifies how documents that are stored in
an XML column are to be indexed, and is an XML-formatted document, residing at
the client. The DAD file specifies a DTD to use for validating documents inserted
into the XML column. The DAD file has a data type of CLOB. This file can be up to
100 KB.

The DAD file for XML columns contains an XML header, specifies the directory
paths on the client for the DAD file and DTD, and provides a map of any XML data
that is to be stored in side tables for indexing.

To specify the XML column access and storage method, you use the following tag
in the DAD file.

<Xcolumn>
Specifies that the XML data is to be stored and retrieved as entire XML
documents in DB2 columns that are enabled for XML data.

An XML-enabled column is of the XML Extender’s UDT. Applications can
include the column in any user table. You access the XML column data
mainly through SQL statements and the XML Extender’s UDFs.

You can use the XML Extender administration wizard or an editor to create and
update the DAD.

Planning for XML collections
When planning for XML collections, you have different considerations for composing
documents from DB2 data, decomposing XML document into DB2 data, or both.
The following sections address planning issues for XML collections, and address
composition and decomposition considerations.

Validation
After you choose an access and storage method, you can determine whether to
validate your data. You validate XML data using a DTD. Using a DTD ensures that
the XML document is valid and lets you perform structured searches on your XML
data. The DTD is stored in the DTD repository.

Recommendation: Validate XML data with a DTD. To validate, you need to have a
DTD in the XML Extender repository. See “Storing a DTD in the DTD repository
table” on page 70 to learn how to insert a DTD into the repository. The DTD
requirements differ depending on whether you are composing or decomposing XML
documents. The following list describes these requirements:

v For composition, you can only validate generated XML documents against one
DTD. The DTD to be used is specified in the DAD file.

v For decomposition, you can validate documents for composition using different
DTDs. In other words, you can decompose documents, using the same DAD file,
but call DTDs that are different. To reference multiple DTDs, you must use the
following guidelines:

– At least one of the DTDs must be stored in the DTD_REF table. All of the
DTDs can be stored in this table.

– The DTDs should have a common structure, with differences in subelements.

– You must specify validation in the DAD file.

52 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

– The SYSTEM ID of the XML document must specify the DTD file using a full
path name.

– The DAD file contains the specification for how to decompose the document,
and therefore, you can specify only common elements and attributes for
decomposition. Elements and attributes that are unique to a DTD cannot be
decomposed.

Important: Make the decision whether to validate XML data before inserting XML
data into DB2. The XML Extender does not support the validation of data that has
already been inserted into DB2.

Considerations:

v You should use a DTD when using XML as interchange format.

v Validating your XML data might have a small performance impact.

v You can decompose only common elements and attributes when using multiple
DTDs for decomposition.

v You can decompose all elements and attributes when using one DTD.

v You can use only one DTD for composition.

The DAD file
For XML collections, the DAD file maps the structure of the XML document to the
DB2 tables from which you either compose the document, or to where you
decompose the document.

For example, if you have an element called <Tax> in your XML document, you
might need to map <Tax> to a column called TAX. You define the relationship
between the XML data and the relational data in the DAD.

The DAD file is specified either while enabling a collection, or when you use the
DAD file in XML collection stored procedures. The DAD is an XML-formatted
document, residing at the client. If you choose to validate XML documents with a
DTD, the DAD file can be associated with that DTD. When used as the input
parameter of the XML Extender stored procedures, the DAD file has a data type of
CLOB. This file can be up to 100 KB.

To specify the XML collection access and storage method, you use the following tag
in the DAD file:

<Xcollection>
Specifies that the XML data is either to be decomposed from XML
documents into a collection of relational tables, or to be composed into XML
documents from a collection of relational tables.

An XML collection is a virtual name for a set of relational tables that
contains XML data. Applications can enable an XML collection of any user
tables. These user tables can be existing tables of legacy business data or
tables that the XML Extender recently created. You access XML collection
data mainly through the stored procedures that the XML Extender provides.

The DAD file defines the XML document tree structure, using the following kinds of
nodes:

root_node
Specifies the root element of the document.

element_node
Identifies an element, while can be the root element or a child element.

Chapter 3. Preparing to use the XML Extender: administration 53

text_node
Represents the CDATA text of an element.

attribute_node
Represents an attribute of an element.

Figure 8 shows a fragment of the mapping that is used in a DAD file. The nodes
map the XML document content to table columns in a relational table.

In this example, the first two columns in the SQL statement have elements and
attributes mapped to them. The XML Extender also supports processing instructions
for stylesheets, using the <stylesheet> element. It must be inside the root node of
the DAD file, with the doctype and prolog defined for the XML document. For
example:
<Xcollection>
...
<prolog>...</prolog>
<doctype>...</doctype>
<stylesheet>?xml-stylesheet type="text/css" href="order.css"?</stylesheet>
<root_node>...</root_node>
...

</Xcollection>

You can use the XML Extender administration wizard or an editor to create and
update the DAD file. The <stylesheet> element is not currently supported by the
XML Extender administration wizard.

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "dxx_install/dtd/dad.dtd">
<DAD>
...

<Xcollection>
<SQL_stmt>

...
</SQL_stmt>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Order SYSTEM "dxx_install/sample/dtd/getstart.dtd"</doctype>
<root_node>

<element_node name="Order"> --> Identifies the element <Order>
<attribute_node name="key"> --> Identifies the attribute "key"

<column name="order_key"/> --> Defines the name of the column,
"order_key", to which the element and
attribute are mapped

</attribute_node>
<element_node name="Customer"> --> Identifies a child element of

<Order> as <Customer>
<text_node> --> Specifies the CDATA text for the element

<Customer>
<column name="customer"> --> Defines the name of the column, "customer",

to which the child element is mapped
</text_node>

</element_node>
...

</element_node>

...
<root_node>
</Xcollection>
</DAD>

Figure 8. Node definitions

54 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Mapping schemes for XML collections
If you are using an XML collection, you must select a mapping scheme that defines
how XML data is represented in a relational database. Because XML collections
must match a hierarchical structure that is used in XML documents with a relational
structure, you should understand how the two structures compare. Figure 9 shows
how the hierarchical structure can be mapped to relational table columns.

The XML Extender uses the mapping scheme when composing or decomposing
XML documents that are located in multiple relational tables. The XML Extender
provides a wizard that assists you in creating the DAD file. However, before you
create the DAD file, you must think about how your XML data is mapped to the
XML collection.

Types of mapping schemes: The mapping scheme is specified in the
<Xcollection> element in the DAD file. The XML Extender provides two types of
mapping schemes: SQL mapping and Relational Database (RDB_node) mapping.
Both methods use the XPath model to define the hierarchy of the XML document.

SQL mapping
Allows direct mapping from relational data to XML documents through a
single SQL statement and the XPath data model. SQL mapping is used for

root_node

attribute_node
Color

text_node

text_node

text_node text_node

text_node

price

date mode

attribute_node
Key

tax

element_node
Order

element_node
Part

element_node
ExtendedPrice

element_node
Tax

element_node
Key

element_node
Shipment

element_node
ShipDate

element_node
ShipMode

text_node text_node
customer_name customer_email

element_node
Customer

element_node
Name

element_node
Email

part_key

color

order_key

Names of columns in DB2 tables

text_node

element_node
Quantity

quantity

Figure 9. XML document structured mapped to relational table columns

Chapter 3. Preparing to use the XML Extender: administration 55

composition; it is not used for decomposition. SQL mapping is defined with
the SQL_stmt element in the DAD file. The content of the SQL_stmt is a
valid SQL statement. The SQL_stmt maps the columns in the SELECT
clause to XML elements or attributes that are used in the XML document.
When defined for composing XML documents, the column names in the
SQL statement’s SELECT clause are used to define the value of an
attribute_node or a content of text_node. The FROM clause defines the
tables containing the data; the WHERE clause specifies the join and search
condition.

The SQL mapping gives DB2 users the power to map the data using SQL.
When using SQL mapping, you must be able to join all tables in one
SELECT statement to form a query. If one SQL statement is not sufficient,
consider using RDB_node mapping. To tie all tables together, the primary
key and foreign key relationship is recommended among these tables.

RDB_node mapping
Defines the location of the content of an XML element or the value of an
XML attribute so that the XML Extender can determine where to store or
retrieve the XML data.

This method uses the XML Extender-provided RDB_node, which contains
one or more node definitions for tables, optional columns, and optional
conditions. The tables and columns are used to define how the XML data is
to be stored in the database. The condition specifies the criteria for
selecting XML data or the way to join the XML collection tables.

To define a mapping scheme, you create a DAD with an <Xcollection> element.
Figure 10 on page 57 shows a fragment of a sample DAD file with an XML
collection SQL mapping that composes a set of XML documents from data in three
relational tables.

56 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

The XML Extender provides several stored procedures that manage data in an XML
collection. These stored procedures support both types of mapping, but require that
the DAD file follow the rules that are described in “Mapping scheme requirements”.

Mapping scheme requirements: The following sections describe requirements for
each type of the XML collection mapping schemes.

Requirements when using SQL mapping

In this mapping scheme, you must specify the SQL_stmt element in the
DAD <Xcollection> element. The SQL_stmt should contain a single SQL
statement that can join multiple relational tables with the query predicate. In
addition, the following clauses are required:

v SELECT clause

– Ensure that the name of the column is unique. If two tables have the
same column name, use the AS keyword to create an alias name for
one of them.

– Group the columns of the same table together, and use the logical
hierarchical level of the relational tables. This means group the tables
according to the level of importance as they map to the hierarchical
structure of your XML document. In the SELECT clause, the columns

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "dxx_install/dtd/dad.dtd">
<DAD>
<dtdid>dxx_install/samples/dad/getstart.dtd</dtdid>
<validation>YES</validation>
<Xcollection>
<SQL_stmt>

SELECT o.order_key, customer, p.part_key, quantity, price, tax, date,
ship_id, mode, comment

FROM order_tab o, part_tab p,
table(select db2xml.generate_unique()
as ship_id, date, mode, from ship_tab)

s
WHERE p.price > 2500.00 and s.date > "1996-06-01" AND

p.order_key = o.order_key and s.part_key = p.part_key
</SQL_stmt>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE DAD SYSTEM "dxx_install/samples/dtd/getstart.dtd"</doctype>
<root_node>
<element_node name="Order">
<attribute_node name="key">

<column_name="order_key"/>
</attribute_node>
<element_node name="Customer">
<text_node>
<column name="customer"/>
</text_node>
<element_node>

...

</element_node><!-end Part->
</element_node><!-end Order->
</root_node>

</Xcollection>
</DAD>

Figure 10. SQL mapping scheme

Chapter 3. Preparing to use the XML Extender: administration 57

of the higher-level tables should proceed the columns of lower-level
tables. The following example demonstrates the hierarchical
relationship among tables:
SELECT o.order_key, customer, p.part_key, quantity, price, tax,

ship_id, date, mode

In this example, order_key and customer from table ORDER_TAB
have the highest relational level because they are higher on the
hierarchical tree of the XML document. The ship_id, date, and mode
from table SHIP_TAB are at the lowest relational level.

– Use a single-column candidate key to begin each level. If such a key
is not available in a table, the query should generate one for that table
using a table expression and the user-defined function,
generate_unique(). In the above example, the o.order_key is the
primary key for ORDER_TAB, and the part_key is the primary key of
PART_TAB. They appear at the beginning of their own group of
columns that are to be selected. Because the SHIP_TAB table does
not have a primary key, one needs to be generated, in this case,
ship_id. It is listed as the first column for the SHIP_TAB table group.
Use the FROM clause to generate the primary key column, as shown
in the following example.

v FROM clause

– Use a table expression and the user-defined function,
generate_unique(), to generate a single key for tables that do not
have a primary single key. For example:
FROM order_tab as o, part_tab as p,

table(select db2xml.generate_unique() as
ship_id, date, mode from ship_tab) as s

In this example, a single column candidate key is generated with the
function, generate_unique() and given an alias named ship_id.

– Use an alias name when needed to make a column distinct. For
example, you could use o for ORDER_TAB, p for PART_TAB, and s
for SHIP_TAB.

v WHERE clause

– Specify a primary and foreign key relationship as the join condition
that ties tables in the collection together. For example:
WHERE p.price > 2500.00 AND s.date > "1996-06-01" AND

p.order_key = o.order_key AND s.part_key = p.part_key

– Specify any other search condition in the predicate. Any valid
predicate can be used.

v ORDER BY clause

– Define the ORDER BY clause at the end of the SQL_stmt.

– Ensure that the column names match the column names in the
SELECT clause.

– Specify the column names or identifiers that uniquely identify entities
in the entity-relationship design of the database. An identifier can be
generated using a table expression and the function generate_unique,
or a user-defined function (UDF).

– Maintain the top-down order of the hierarchy of the entities. The
column specified in the ORDER BY clause must be the first column
listed for each entity. Keeping the order ensures that the XML
documents to be generated do not contain incorrect duplicates.

58 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

– Do not qualify the columns in ORDER BY by any schema or table
name.

Although the SQL_stmt has the preceding requirements, it is powerful
because you can specify any predicate in your WHERE clause, as long as
the expression in the predicate uses the columns in the tables.

Requirements when using RDB_node mapping

When using this mapping method, do not use the element SQL_stmt in the
<Xcollection> element of the DAD file. Instead, use the RDB_node element
in each of the top nodes for element_node and for each attribute_node and
text_node.

v RDB_node for the top element_node

The top element_node in the DAD file represents the root element of the
XML document. Specify an RDB_node for the top element_node as
follows:

– Specify all tables that are associated with the XML documents. For
example, the following mapping specifies three tables in the
RDB_node of the element_node <Order>, which is the top
element_node:
<element_node name="Order">

<RDB_node>
<table name="order_tab"/>
<table name="part_tab"/>
<table name="ship_tab"/>
<condition>

order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key

</condition>
</RDB_node>

The condition element can be empty or missing if there is only one
table in the collection.

– If you are decomposing, or are enabling the XML collection specified
by the DAD file, you must specify a primary key for each table. The
primary key can consist of a single column or multiple columns, called
a composite key. The primary key is specified by adding an attribute
key to the table element of the RDB_node. When a composite key is
supplied, the key attribute is specified by the names of key columns
separated by a space. For example:
<table name="part_tab" key="part_key price"/>

The information specified for decomposition is ignored when
composing a document.

– Use the orderBy attribute to recompose XML documents containing
elements or attributes with multiple occurrence back to their original
structure. This attribute allows you to specify the name of a column
that will be the key used to preserve the order of the document. The
orderBy attribute is part of the table element in the DAD file, and it is
an optional attribute.

You must explicitly spell out the table name and the column name.

v RDB_node for each attribute_node and text_node

In this mapping scheme, the data resides in the attribute_node and
text_node for each element_node. Therefore, the XML Extender needs to
know from where in the database it needs to find the data. You need to

Chapter 3. Preparing to use the XML Extender: administration 59

specify an RDB_node for each attribute_node and text_node, telling the
stored procedure from which table, which column, and under which query
condition to get the data. You must specify the table and column values;
the condition value is optional.

– Specify the name of the table containing the column data. The table
name must be included in the RDB_node of the top element_node. In
this example, for text_node of element <Price>, the table is specified
as PART_TAB.
<element_node name="Price">

<text_node>
<RDB_node>

<table name="part_tab"/>
<column name="price"/>
<condition>

price > 2500.00
</condition>

</RDB_node>
</text_node>

</element_node>

– Specify the name of the column that contains the data for the element
text. In the previous example, the column is specified as PRICE.

– Specify a condition if you want XML documents to be generated using
the query condition. In the example above, the condition is specified
as price > 2500.00. Only the data meeting the condition is in the
generated XML documents. The condition must be a valid WHERE
clause.

– If you are decomposing a document, or are enabling the XML
collection specified by the DAD file, you must specify the column type
for each attribute_node and text_node. This ensures the correct data
type for each column when new tables are created during the
enabling of an XML collection. Column types are specified by adding
the attribute type to the column element. For example,
<column name="order_key" type="integer"/>

The information specified for decomposition is ignored when
composing a document.

With the RDB_node mapping approach, you don’t need to supply SQL
statements. However, putting complex query conditions in the RDB_node
element can be more difficult.

Decomposition table size requirements
Decomposition uses RDB_node mapping to specify how an XML document is
decomposed into DB2 tables by extracting the element and attribute values into
table rows. The values from each XML document are stored in one or more DB2
tables. Each table can have a maximum of 1024 rows decomposed from each
document.

For example, if an XML document is decomposed into five tables, each of the five
tables can have up to 1024 rows for that particular document. If the table has rows
for multiple documents, it can have up to 1024 rows for each document. If the table
has 20 documents, it can have 20,480 rows, 1024 for each document.

Using multiple-occurring elements (elements with location paths that can occur
more than once in the XML structure) affects the number of rows inserted for each
document. For example, a document that contains an element <Part> that occurs

60 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

20 times, might be decomposed as 20 rows in a table. When using multiple
occurring elements, consider that a maximum of 1024 rows can be decomposed
into one table from a single document.

Location path
A location path defines the location of an XML element or attribute within the
structure of the XML document. The XML Extender uses the location path in the
following situations:

v To locate the elements and attributes to be extracted when using extraction
UDFs

v To specify the mapping between an XML element or attribute and a DB2 column
when defining the indexing scheme in the DAD for XML columns

v For structural text search, using the Text Extender

v To override the XML collection DAD file values in a stored procedure.

Figure 11 shows an example of a location path and its relationship to the structure
of the XML document.

Location path syntax
The following list describes the location path syntax that is supported by the XML
Extender. A single slash (/) path indicates that the context is the whole document.

1. / Represents the XML root element, the element that contains all other
elements in the document.

2. /tag1
Represents the element tag1 under root.

3. /tag1/tag2/..../tagn
Represents an element with the name tagn as the child of the descending
chain from root, tag1, tag2, through tagn-1.

4. //tagn
Represents any element with the name tagn, where double slashes (//)
denote zero or more arbitrary tags.

Location path: “/Order/Part/Shipment/ShipDate”

ShipDate

American Motors

1998-08-19 Boat

68

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02

ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure 11. Storing documents as structured XML documents in a DB2 table column

Chapter 3. Preparing to use the XML Extender: administration 61

5. /tag1//tagn
Represents any element with the name tagn, a child of an element with the
name tag1 under root, where double slashes (//) denote zero or more
arbitrary tags.

6. /tag1/tag2/@attr1
Represents the attribute attr1 of an element with the name tag2, which is a
child of element tag1 under root.

7. /tag1/tag2[@attr1=″5″]
Represents an element with the name tag2 whose attribute attr1 has the
value 5. tag2 is a child of element with the name tag1 under root.

8. /tag1/tag2[@attr1=″5″]/.../tagn
Represents an element with the name tagn, which is a child of the
descending chain from root, tag1, tag2, through tagn-1, where the attribute
attr1 of tag2 has the value 5.

Wildcards: You can substitute an asterisk for an element in a location path to
match any string. For example
/tag1/*/tagn/tagn+1 ?

Simple location path
Simple location path is the location path syntax used to specify elements and
attributes for side tables, defined in the XML column DAD file. Simple location path
is represented as a sequence of element type names that are connected by a
single slash (/). The attribute values are enclosed within square brackets following
its element type. Table 10 summarizes the syntax for simple location path.

Table 10. Simple location path syntax

Subject Location path Description

XML element /tag1/tag2/..../tagn-1/tagn An element content identified by
the element named tagn and its
parents

XML attribute /tag_1/tag_2/..../tag_n-
1/tag_n/@attr1

An attribute with name attr1 of the
element identified by tagn and its
parents

Location path usage
The syntax of the location path depends in which context you use it to access the
location of an element or attribute. Because the XML Extender uses one-to-one
mapping between an element or attribute, and a DB2 column, it it restricts the
syntax rules that are allowed in the DAD file and in functions. Table 11 describes in
which context the syntax options are used. The numbers that are specified in the
“Location path supported” column refer to the syntax representations in “Location
path syntax” on page 61.

Table 11. The XML Extender’s restrictions using location path

Use of the location path Location path supported

Element in the XML column DAD mapping for
side tables

3, 6 (simple location path described in
Table 10)

Extracting UDFs 1-81

Update UDF 1-81

62 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Table 11. The XML Extender’s restrictions using location path (continued)

Use of the location path Location path supported

Text Extender’s search UDF 3 – Exception: the root mark is specified
without the slash. For example:
tag1/tag2/..../tagn

1 The extracting and update UDFs support location paths that have predicates with attributes,
but not elements.

Chapter 3. Preparing to use the XML Extender: administration 63

64 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 4. Using the administration tools

To complete administration tasks, you can use one or more of the following tools:

v The XML Extender administration wizard for all administration tasks

v The DXXADM command from TSO, or USS with the odb2 command line

v SQL statements run from the odb2 command line

v JCL based on samples provided in the SDXXJCL dataset, as listed in Table 6 on
page 37

v Custom applications using the XML Extender adminstration stored procedures

The following chapters show how to complete administration tasks using the
following methods:

v XML Extender administration wizard. See “Starting the administration wizard” to
learn how to set up and use the wizard.

v The DXXADM command from TSO, or USS with the odb2 command line

v DB2 command line, called the “command line”. If you are using UNIX System
Services (USS), you can use the odb2 command line tool. odb2 is a command
line for DB2 on OS/390 and z/OS UNIX. See “Using the USS odb2 command
line” on page 67 to learn how to use the odb2 command line.

The administration stored procedures are described in “Administration stored
procedures” on page 191.

Starting the administration wizard
The following sections describe how to set up and invoke the XML Extender
administration wizard.

Setting up the administration wizard
Ensure that you have followed the installation and configuration steps for the
administration wizard in the readme file for your operating system. This includes
ensuring that you have run the bind statement and included the required software in
your CLASSPATH statements.

v The bind statements are provided in the wizard readme files. and in the getting
started sample file:
/dxx_install/samples/cmd/getstart_prep.cmd

v The CLASSPATH statement should look something like the following example
(line breaks are for presentation only):
.;C:\java\db2java.zip;C:\java\runtime.zip;C:\java\sqlj.zip;
C:\dxx\dxxadmin\dxxadmin.jar;C:\dxx\dxxadmin\dxxadmin.cmd;
C:\dxx\dxxadmin\html\dxxahelp*.htm;C:\java\jdk\lib\classes.zip;
C:\java\swingall.jar

Important: The wizard requires a path name without a space. If you have the
IBM DB2 Universal Database V7.1 default installation, SQLLIB\java is under the
Program Files directory, copy the Java code to a simpler path. Do not move the
Java code and change CLASSPATH; the Control Center requires the
CLASSPATH specified during installation.

The XML Extender Administration wizard uses a class file. The complete file name
of the main XML Extender Administration class file is:

© Copyright IBM Corp. 2000, 2001 65

com.ibm.dxx.admin.Admin.

Modify this file for your system to invoke the wizard.

v To invoke using the JDK, type:
java -classpath classpath com.ibm.dxx.admin.Admin

v To invoke using the JRE, type:
jre -classpath classpath com.ibm.dxx.admin.Admin

where classpath specifies either:

– The %CLASSPATH% environment variable to specify where the
administration wizard class files are located. When using this option, your
system CLASSPATH must point to the dxx_install/dxxadmin directory, which
contains the following files: dxxadmin.jar, xml4j.jar, and db2java.zip. For
example:
java -classpath %CLASSPATH% com.ibm.dxx.admin.Admin

– An override of the %CLASSPATH% environment variable with pointers to files
in the dxx_install/dxxadmin directory, from which you are running the XML
Extender administration wizard. For example:
java -classpath dxxadmin.jar;xml4j.jar;db2java.zip com.ibm.dxx.admin.Admin

url=jdbc:db2:mydb2 userid=db2xml password=db2xml
driver=COM.ibm.db2.jdbc.app.DB2Driver

Optionally, you can specify the following parameters at runtime:

url Fully-qualified URL path to the IBM DB2 UDB data source to connect to.
For example: jdbc:db2://dxx.stl.ibm.com:8080/guidb. Labeled “Address” in
the wizard.

userid Userid to use to access the above data source. For example: db2guest.

password
Password for the above user ID. For example: guest.

driver JDBC driver name for the above URL. Default:
COM.ibm.db2.jdbc.net.DB2Driver. Labeled “JDBC driver” in the wizard.

See “Invoking the administration wizard” for more information about these values.

Important: You must have DB2 Connect Personal or Enterprise Edition to use the
Wizard with XML Extender for OS/390 and z/OS.

Invoking the administration wizard
Follow these steps to invoke the XML Extender administration wizard.

1. Invoke the wizard.

For Windows NT:

Double click on the XML Extender administration wizard icon from the desktop.

For UNIX:

Run the dxxadmin file.

The administration wizard Logon window opens.

When you invoke the XML Extender administration wizard, the Logon window
opens. Log in to the database that you want to use when working with XML data.
XML Extender connects to the current database.

66 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

2. In the Address field, enter the fully-qualified JDBC URL to the IBM DB2 UDB
data source to which you are connecting. The address has the following syntax:
jdbc:db2:database_name

Where database_name is the database to which you are connecting and storing
XML documents.

For example:
jdbc:db2:sales_db

3. In the User ID and Password fields, enter or verify the DB2 user ID and
password for the database to which you are connecting.

4. In the JDBC Driver field, verify the JDBC driver name for the specified address
using the following values:
COM.ibm.db2.jdbc.app.DB2DRIVER

5. Click Finish to connect to the wizard and advance to the LaunchPad window.

The LaunchPad window provides access to five administration wizards. With these
wizards, you can:

v Enable server

v Add a DTD to the DTD repository

v Work with DAD files for:

– XML columns

– XML collections

v Work with XML columns

v Work with XML collections

Using the USS odb2 command line
You use the odb2 command line to enter DB2 commands from USS. The odb2
command line uses dynamic SQL and the Call Attach Facility (CAF) to allow the
execution SQL commands from the OS/390 and z/OS UNIX shell against an
OS/390 and z/OS DB2 database.

See “Software requirements” on page 37 to learn how to download and install the
odb2 command line.

It is recommended that you create a symbolic link from DB2 to the odb2 command
line in a directory that is in your PATH environment setting in order to have scripts
provided for the examples in this book run seamlessly.

To start the odb2 command line:

From USS command shell, type:
odb2

A command prompt is displayed, from which you can enter DB2 commands.

Chapter 4. Using the administration tools 67

68 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 5. Managing the database server

The XML Extender administration tasks consist of enabling your database and table
columns for XML and mapping XML data to DB2 relational structures. This chapter
describes administration tasks for managing the database server:

1. “Enabling a database server for XML”

2. “Storing a DTD in the DTD repository table” on page 70

3. “Disabling a server for XML” on page 72

To complete the tasks in this chapter, you should be familiar with the concepts and
planning tasks that are described in “Administration planning” on page 46.

In addition to choosing tools and setting up the database environment, you must
define XML columns or XML collections. These tasks are described in the following
chapters:

v “Chapter 6. Working with XML columns” on page 73

v “Chapter 7. Working with XML collections” on page 83

Enabling a database server for XML
To store or retrieve XML documents from DB2 with XML Extender, you enable the
database for XML. XML Extender enables the database you are connected to.

When you enable a database for XML, the XML Extender:

v Creates all the user-defined types (UDTs), user-defined functions (UDFs), and
stored procedures

v Creates and populates control tables with the necessary metadata that the XML
Extender requires

v Creates the DB2XML schema and assigns the necessary privileges

The full name of an XML function is schema-name.function-name, where
schema-name is an identifier that provides a logical grouping for SQL objects.
You can use the full name anywhere you refer to a UDF or a UDT. You can also
omit the schema name when you refer to a UDF or a UDT; in this case, DB2
uses the function path to determine the function or data type that you want.

Using the administration wizard
Use the following steps to enable a database for XML data:

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Enable Server from the LaunchPad window to enable the current
database.

If a database is already enabled, only Disable Server is selectable.

When the database is enabled, you are returned to the LaunchPad window.

© Copyright IBM Corp. 2000, 2001 69

Using the command line
Enter DXXADM from the command line, specifying the database that is to be
enabled.

Syntax:

�� dxxadm enable_server -a subsystem_name
security security_level

�

� using tablespace_DTD_REF,tablespace_XML_USAGE �

� WLM environment WLM_name1
WLM_name2

�

Parameters:

-a subsystem_name
The name of the database server that is to be enabled.

security_level
Determines the user ID that is authorized to access external resources
when running stored procedures. Choices are DB2, USER, DEFINER. DB2
is the default. See DB2 Universal Database for OS/390 and z/OS SQL
Reference, Version 7 for more information

tablespace_DTD_REF
The name of the table space in which the CLOB column, CONTENT, of the
DTD_REF table, is stored.

tablespace_XML_USAGE
The name of table space in which the CLOB column, DAD, of the
XML_USAGE table, is stored.

WLM_name
The names of the WLM environments. At least one name is required. If one
is specified, the name is for all stored procedures and UDFs. If two are
specified, the first name is for the stored procedures, the second name is
for the UDFs.

Example: Enables an existing database server, called SALES_DB.
dxxadm enable_server -a SUBSYS1 using tbspc1,tbspc2 wlm environment envir233

Storing a DTD in the DTD repository table
You can use a DTD to validate XML data in an XML column or in an XML collection.
All DTDs are stored in the DTD repository table, a DB2 table called DTD_REF. It
has a schema name of DB2XML. Each DTD in the DTD_REF table has a unique
ID. The XML Extender creates the DTD_REF table when you enable a database for
XML.

See “Planning for XML columns” on page 48 and “Planning for XML collections” on
page 52 to learn more about using DTDs.

70 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

You can insert the DTD from the command line or by using the administration
wizard.

Using the administration wizard
Use the following steps to insert a DTD:

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Import a DTD from the LaunchPad window to import an existing DTD file
into the DTD repository of the current database. The Import a DTD window
opens.

3. Type the DTD file name in the DTD file name field or click ... to browse for an
existing DTD file.

4. Type the DTD ID in the DTD ID field.

The DTD ID is an identifier for the DTD and can be the path specifying the
location of the DTD on the local system. The DTD ID must match the value that
is specified in the DAD file for the <DTDID> element.

5. Optionally, type the name of the author of the DTD in the Author field.

The XML Extender automatically displays the author’s name if it is specified in
the DTD.

6. Click Finish to insert the DTD into the DTD repository table,
DB2XML.DTD_REF and return to the LaunchPad window.

From the command line
Issue an SQL INSERT statement for the DTD_REF table using the schema in
Table 12:

Table 12. The column definitions for the DTD Reference table

Column name Data type Description

DTDID VARCHAR(128) Primary key (unique and not NULL). The
primary key is used to identify the DTD and
must be the same as the SYSTEM ID on the
DOCTYPE line in each XML document, when
validation is used. When the primary key is
specified in the DAD file, the DAD file must
follow the schema that is defined by the DTD.

CONTENT XMLCLOB The content of the DTD.

USAGE_COUNT INTEGER The number of XML columns and XML
collections in the database that use this DTD
to define a DAD.

AUTHOR VARCHAR(128) Author of the DTD, optional information for
user to input.

CREATOR VARCHAR(128) The user ID that does the first insertion.

UPDATOR VARCHAR(128) The user ID that does the last update.

For example:
DB2 INSERT into DB2XML.DTD_REF values('dxx_install/samples/dtd/getstart.dtd',

DB2XML.XMLClobFromFile('dxx_install/samples/dtd/getstart.dtd'), 0, 'user1',
'user1', 'user1')

Chapter 5. Managing the database server 71

Important for XML collections: The DTD ID is a path specifying the location of the
DTD on the local system. The DTD ID must match the value that is specified in the
DAD file for the <DTDID> element.

Disabling a server for XML
You disable the server when you want to clean up your XML Extender environment
and drop the XML Extender UDTs, UDFs, stored procedures, and administration
support tables. XML Extender disables the server to which you are connected.

When you disable a server for XML, the XML Extender takes the following actions:

v Deletes all the user-defined types (UDTs), user-defined functions (UDFs), and
stored procedures

v Deletes control tables with the metadata for the XML Extender

v Deletes the DB2XML schema.

Before you begin
Disable any XML columns or collections.

Using the administration wizard
Use the following steps to disable a server for XML data:

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Disable server from the LaunchPad window to disable the current
database.

If a database is not current enabled, only Enable server is selectable.

When the server is disabled, you are returned to the LaunchPad window.

Using the command line
Enter DXXADM from the command line, specifying the database that is to be
disabled.

Syntax:

�� disable_server -a subsystem_name �

Parameters:

-a subsystem_name
The name of the DB2 subsystem that is to be disabled.

Example: disables the server.
dxxadm disable_server -a SUBSYS1

72 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|
|

Chapter 6. Working with XML columns

An XML column contains XML documents that can be updated, searched, and
extracted, and is created as an XML user data type (such as XMLVARCHAR). To
store XML documents in an XML column, you need to complete the following tasks:

v Create a document access definition (DAD) file. See “Creating or editing the DAD
file”.

v Create or alter the table in which the XML documents are stored. See “Creating
or altering an XML table” on page 76.

v Enable a column for XML data. See “Enabling XML columns” on page 77.

v Index side tables. See “Indexing side tables” on page 80.

To drop the table that contains the XML column, disable the XML column. See
“Disabling XML columns” on page 81.

Creating or editing the DAD file
To set up XML columns, you need to define the DAD file to access your XML data
and to enable columns for XML data in an XML table. An important concept in
creating the DAD is understanding location path syntax because it is used to map
the element and attribute values that you want to index to DB2 tables. See
“Location path” on page 61 to learn more about location path and its syntax.

When you specify a DAD file, you define the attributes and key elements of your
data that need to be searched. The XML Extender uses this information to create
side tables so that you can index your data to retrieve it quickly. See “The DAD file”
on page 52 to learn about planning issues for creating the DAD file.

Before you begin
v Understand the hierarchical structure of your XML data so that you can define

key elements and attributes for indexing and fast search.

v Prepare and insert the XML document’s DTD into the DTD_REF table. This step
is required for validation.

Using the administration wizard
Use the following steps to create a DAD file:

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Work with DAD files from the LaunchPad window to edit or create an
XML DAD file. The Specify a DAD file window opens.

© Copyright IBM Corp. 2000, 2001 73

|
|
|

|
|

|
|

|

|

|
|

3. Choose whether to edit an existing DAD file or to create a new DAD file.

v To edit an existing DAD:

a. Click ... to browse for an existing DAD file in the pull-down menu, or type
the DAD file name in the File name field.

b. Verify that the wizard recognizes the specified DAD file.

– If the wizard recognizes the specified DAD file, Next is selectable, and
XML column is displayed in the Type field.

– If the wizard does not recognize the specified DAD file, Next is not
selectable. Either retype the DAD file name in the File name field, or
click Open to browse again for an existing DAD file. Continue until
Next is selectable.

c. Click Next.

v To create a new DAD:

a. Leave the File name field blank.

b. From the Type menu, click XML column.

c. Click Next.

4. Choose whether to validate your XML documents with a DTD from the Select
Validation window.

v To validate:

a. Click Validate XML documents with the DTD.

b. Select the DTD to be used for validation from the DTD ID menu.

If XML Extender does not find the specified DTD in the DTD reference table,
it searches for the specified DTD on the file system and uses it to validate.

v Click Do NOT validate XML documents with the DTD to continue without
validating your XML documents.

5. Click Next.

6. Choose whether to add a new side table, edit an existing side table, or remove
an existing side table from the Side tables window.

v To add a new side table or side-table column:

To add a new side table, you define the columns in the table. Complete the
following steps for each column in a side table.

a. Complete the fields of the Details box of the Side tables window.

1) Table name: Type the name of the table containing the column. For
example:
ORDER_SIDE_TAB

2) Column name: Type the name of the column. For example:
CUSTOMER_NAME

3) Type: Select the type of the column from the menu. For example:
XMLVARCHAR

4) Length (VARCHAR type only): Type the maximum number of
VARCHAR characters. For example:
30

5) Path: Type the location path of the element or attribute. For example:
/ORDER/CUSTOMER/NAME

See “Location path” on page 61 for location path syntax.

74 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

6) Multi occur: Select No or Yes from the menu.

Indicates whether the location path of this element or attribute can be
used more than once in a document.

Important If you specify multiple occurrence for a column, you can
specify only one column in the side table.

b. Click Add to add a column.

c. Continue adding, editing, or removing columns for the side table, or click
Next.

v To edit an existing side-table column:

You can update a side table by changing the definitions of the existing
columns.

a. Click on the side-table name and column name you want to edit.

b. Edit the fields of the Details box.

c. Click Change to save changes.

d. Continue adding, editing, or removing columns for each side table, or
click Next.

v To remove an existing side-table column:

a. Click on the side table and column you want to remove.

b. Click Remove.

c. Continue adding, editing, or removing side-tables columns, or click Next.

v To remove an existing side table:

To remove an entire side table, you delete each column in the table.

a. Click on each side-table column for the table you want to remove.

b. Click Remove.

c. Continue adding, editing, or removing side tables columns, or click Next.

7. Type an output file name for the modified DAD file in the File name field of the
Specify a DAD window.

8. Click Finish to save the DAD file and to return to the LaunchPad window.

Using the command line
The DAD file is an XML file that can be created in any text editor.

Use the following steps to create a DAD file:

1. Open a text editor.

2. Create the DAD file header, using the following syntax:
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "path/dtd/dad.dtd"> --> the path and file name of

the DTD for the DAD file

3. Insert the <DAD></DAD> tags.

4. Inside the <DAD> tag, optionally specify the DTD ID identifier that associates
the DAD file with the XML document DTD for validation:
<dtdid>path/dtd_name.dtd</dtdid> --> the path and file

name of the DTD
for your application

The DTD ID is required for validation and must match the DTD ID value used
when inserting the DTD into the DTD reference table (DB2XML.DTD_REF).

5. Specify whether to validate (that is, to use the specified DTD to ensure that the
XML document is a valid XML document). For example:

Chapter 6. Working with XML columns 75

<validation>YES</validation> --> specify YES or NO

If you specify YES, you must have specified a DTD ID in the previous step as
well as inserted a DTD into the DTD_REF table.

6. Use the <Xcolumn> element to define the access and storage method as XML
column.
<Xcolumn>
</Xcolumn>

7. Define each side table and the important elements and attributes to be indexed
for structural search. Perform the following steps for each table. The following
steps use examples taken from a sample DAD file shown in “DAD file: XML
column” on page 244:

a. Insert the <table></table> tags and the name attribute.
<table name="order_tab">
</table>

b. After the <table> tag, insert a <column> tag and its attributes for each
column in the table:

v name: the name of the column

v type: the type of column

v path: the location path of the element or attribute. See “Location path”
on page 61 for location path syntax.

v multi_occurrence: an indication of whether this element or attribute can
appear more than once in a document. Note that for a location path
target that is an attribute, a value of “YES” indicates that the attribute
appears more than once because the element to which the attribute is
attached appears more than once.

<table ...>
<column name="order_key"

type="integer"
path="/Order/@key"
multi_occurrence="NO"/>

<column name="customer"
type="varchar(50)"
path="/Order/Customer/Name"
multi_occurrence="NO"/>

</table>

8. Ensure that you have an ending </table> tag after the last column definition.

9. Ensure that you have an ending </Xcolumn> tag after the last </table> tag.

10. Ensure that you have an ending </dad> tag after the </Xcolumn> tag.

Creating or altering an XML table
To store intact XML documents in a table, you must create or alter a table so that it
contains a column with an XML user-defined type (UDT). The table is known as an
XML table, a table that contains XML documents. The table can be an altered table
or a new table. When a table contains a column of XML type, you can enable the
column for XML.

You can alter an existing table to add a column of XML type using the
administration wizard, or using the command line.

76 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Using the administration wizard
1. Set up and start the administration wizard. See “Starting the administration

wizard” on page 65 for details.

2. Click Work with XML columns from the LaunchPad window. The Select a task
window opens.

3. Click Add an XML Column. The Add an XML column window opens.

4. Select the name of the table from the Table name pull-down menu, or type the
name of the table you want to alter. For example:
SALES_TAB

5. Type the name of the column to be added to the table in the Column name
field. For example:
ORDER

6. Select the UDT for the column from the Column type pull-down menu. For
example:
XMLVARCHAR

7. Click Finish to add the column of XML type.

Using the command line
Create or alter a table with a column of an XML type in the column clause of the
CREATE TABLE or ALTER TABLE statement.

Example: In the sales application, you might want to store an XML-formatted line
item order in a column called ORDER of an application table called SALES_TAB.
This table also has the columns INVOICE_NUM and SALES_PERSON. Because it
is a small order, you store it using the XMLVARCHAR type. The primary key is
INVOICE_NUM. The following CREATE TABLE statement creates the table with a
column of XML type:
CREATE TABLE sales_tab(

invoice_num char(6) NOT NULL PRIMARY KEY,
sales_person varchar(20),
order XMLVarchar);

Enabling XML columns
To store an XML document in a DB2 database, you must enable a column for XML.
Enabling a column prepares it for indexing so that it can be searched quickly. You
can enable a column by using the XML Extender administration wizard or using the
command line. The column must be of XML type.

When the XML Extender enables an XML column, it:

v Reads the DAD file to optionally:

– Validate the DAD file against the DTD for the DAD file.

– Retrieve the DTD ID from the DTD_REF table, if specified.

– Create side tables for indexing on the XML column.

– Prepare the column to contain XML data.

v Optionally creates a default view of the XML table and side tables. The default
view displays the application table and the side tables.

v Specifies a ROOT ID value, if one has not been specified.

After you enable the XML column, you can

v Create indexes on the side tables

Chapter 6. Working with XML columns 77

v Insert XML documents in the XML column

v Query, update, or search the XML documents in the XML column.

Before you begin
v Create an XML table by creating or altering a DB2 table with a column of XML

type.

v Create a DAD file specifying both the column to be enabled and the side tables
to be created for indexing frequently searched elements and attributes.

Using the administration wizard
Use the following steps to enable XML columns:

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Work with XML Columns from the LaunchPad window to view the XML
Extender column related tasks. The Select a Task window opens.

3. Click Enable a Column and then Next to enable an existing table column in
the database.

4. Select the table that contains the XML column from the Table name field. For
example:
SALES_TAB

5. Select the column being enabled from the Column name field. For example:
ORDER

The column must exist and be of XML type.

6. Type the DAD path and file name in the DAD file name field, or click ... to
browse for an existing DAD file. For example:
dxx_install/samples/dad/getstart.dad

7. Optionally, type the name of an existing table space in the Table space field.

The table space contains side tables that the XML Extender created. If you
specify a table space, the side tables are created in the specified table space.
If you do not specify a table space, the side tables are created in the default
table space.

8. Optionally, type the name of the default view in the Default view field.

When specified, the default view is automatically created when the column is
enabled and joins the XML table and all of the related side tables.

9. Optionally, type the column name of the primary key in the application table in
the Root ID field. This is recommended.

The XML Extender uses the value of ROOT ID as a unique identifier to
associate all side tables with the application table. If not specified, the XML
Extender adds the DXXROOT_ID column to the application table and
generates an identifier.

10. Click Finish to enable the XML column, create the side tables, and return to
the LaunchPad window.

v If the column is successfully enabled, an Enabled column is successful
message is displayed.

v If the column is not successfully enabled, an error box is displayed. Correct
the values of the entry field until the column is successfully enabled.

78 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Using the command line
To enable an XML column, enter the following command:

Syntax:

�� dxxadm enable_column - a subsystem_name tbName colName DAD_file �

�
-t tablespace -v default_view -r root_id

�

Parameters:

-a subsystem_name
The name of the DB2 subsystem.

tbName
The name of the table that contains the column that is to be enabled.

colName
The name of the XML column that is being enabled.

DAD_file
The name of the file that contains the document access definition (DAD).

tablespace
A previously created table space that contains side tables that the XML
Extender created. If not specified, the default table space is used.

default_view
Optional. The name of the default view that the XML Extender created to
join an application table and all of the related side tables.

root_id
Optional, but recommended. The column name of the primary key in the
application table and a unique identifier that associates all side tables with
the application table. Known as ROOT_ID. The XML Extender uses the
value of ROOT_ID as a unique identifier to associate all side tables with the
application table. If the ROOT ID is not specified, the XML Extender adds
the DXXROOT_ID column to the application table and generates an
identifier.

Restriction: If the application table has a column name of DXXROOT_ID,
but this column does not contain the value for root_id, you must specify the
root_id parameter; otherwise, an error occurs.

Example: The following example enables a column using the command line. The
DAD file and XML document can be found in “Appendix B. Samples” on page 243.
dxxadm enable_column -a SUBSYS1 SALES_TAB ORDER -v SALODVW -r INVOICE_NUMBER

In this example, the column ORDER is enabled in the table SALES_TAB. The DAD
file is getstart.dad, the default view is sales_order_view, and the ROOT ID is
INVOICE_NUM.

Using this example, the SALES_TAB table has the following columns:

Column name INVOICE_NUM SALES_PERSON ORDER

Chapter 6. Working with XML columns 79

Data type CHAR(6) VARCHAR(20) XMLVARCHAR

The following side tables are created based on the DAD specification:

ORDER_SIDE_TAB:

Column name ORDER_KEY CUSTOMER INVOICE_NUM

Data type INTEGER VARCHAR(50) CHAR(6)

Path expression /Order/@key /Order/Customer/Name N/A

PART_SIDE_TAB:

Column name PART_KEY PRICE INVOICE_NUM

Data type INTEGER DOUBLE CHAR(6)

Path expression /Order/Part/@key /Order/Part/ExtendedPrice N/A

SHIP_SIDE_TAB:

Column name DATE INVOICE_NUM

Data type DATE CHAR(6)

Path expression /Order/Part/Shipment/ShipDate N/A

All the side tables have the column INVOICE_NUM of the same type, because the
ROOT ID is specified by the primary key INVOICE_NUM in the application table.
After the column is enabled, the value of the INVOICE_NUM is inserted into the
side tables. Specifying the default_view parameter when enabling the XML column,
ORDER, creates a default view, sales_order_view. The view joins the above tables
using the following statement:
CREATE VIEW sales_order_view(invoice_num, sales_person, order,

order_key, customer, part_key, price, date)
AS
SELECT sales_tab.invoice_num, sales_tab.sales_person, sales_tab.order,

order_tab.order_key, order_tab.customer,
part_tab.part_key, part_tab.price,
ship_tab.date

FROM sales_tab, order_tab, part_tab, ship_tab
WHERE sales_tab.invoice_num = order_tab.invoice_num

AND sales_tab.invoice_num = part_tab.invoice_num
AND sales_tab.invoice_num = ship_tab.invoice_num

If the table space is specified in the ENABLE_COLUMN command, the side tables
are created in the specified table space. If the table space is not specified, the side
tables are created in the default table space.

Indexing side tables
After you have enabled an XML column and created the side tables, you can index
the side tables. Side tables contain the XML data in columns you specified while
creating the DAD file. Indexing these tables helps you improve the performance of
the queries against the XML documents.

80 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Before you begin
v Create a DAD file that specifies side tables for the XML document structure.

v Enable the XML column using the DAD file; which creates the side tables.

Creating the indexes
From the command line, use the DB2 CREATE INDEX command to index the side
tables.

Example:

The following example creates indexes on four side tables:
DB2 CREATE INDEX KEY_IDX

ON ORDER_SIDE_TAB(ORDER_KEY)

DB2 CREATE INDEX CUSTOMER_IDX
ON ORDER_SIDE_TAB(CUSTOMER)

DB2 CREATE INDEX PRICE_IDX
ON PART_SIDE_TAB(PRICE)

DB2 CREATE INDEX DATE_IDX
ON SHIP_SIDE_TAB(DATE)

Disabling XML columns
Disable a column if you need to update a DAD file for the XML column, or if you
want to delete the XML column or the table that contains the column. After the
column is disabled, you can re-enable the column with the updated DAD file, delete
the column, or other tasks. You can disable a column by using the XML Extender
administration wizard or using the command line.

When the XML Extender disables an XML column, it:

v Deletes the column’s entry from XML_USAGE table.

v Drops the side tables associated with this column.

Important: If you drop a table with an XML column, without first disabling the
column, XML Extender cannot drop any side the tables associated with the XML
column, which might cause unexpected results.

Before you begin
Ensure that the XML column to be disabled exists in the current DB2 database.

Using the administration wizard
Use the following steps to disable XML columns:

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Working with XML Columns from the LaunchPad window to view the
XML Extender column related tasks. The Select a Task window opens.

3. Click Disable a Column and then Next to disable an existing table column in
the database.

4. Select the table that contains the XML column from the Table name field.

5. Select the column being disabled from the Column name field.

6. Click Finish.

Chapter 6. Working with XML columns 81

|
|

v If the column is successfully disabled, an Disabled column is successful
message is displayed.

v If the column is not successfully disabled, an error box is displayed. Correct
the values of the entry field until the column is successfully disabled.

Using the command line
To disable an XML column, enter the following command:

Syntax:

�� dxxadm disable_column -a subsystem_name tbName colName �

Parameters:

-a subsystem_name
The name of the DB2 subsystem.

tbName
The name of the table that contains the column that is to be disabled.

colName
The name of the XML column that is being disabled.

Example: The following example disables a column using the command line. The
DAD file and XML document can be found in “Appendix B. Samples” on page 243.
dxxadm disable_column -a SUBSYS1 SALES_TAB ORDER

In this example, the column ORDER is disabled in the table SALES_TAB.

When the column is disabled, the side tables are dropped.

82 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 7. Working with XML collections

XML collections are collections of tables that associated by a common XML
document structure. The tables are either associated because they contain data
that you will use to populate XML documents, or columns in which you will store
data decomposed from XML documents.

Setting up XML collections requires creating a mapping scheme and optionally
enabling the collection with a name that associates the DB2 tables with a DAD file.
Although enabling the XML collection is not required, it does provide better
performance.

To set up an XML collection, you must complete the following tasks:

v Create a document access definition (DAD) file. See “Creating or editing the DAD
file for the mapping scheme”

v (Optional) Enable the collection. See “Enabling XML collections” on page 101.

To redefine or delete the collection, disable the XML collection. See “Disabling XML
collections” on page 103.

Creating or editing the DAD file for the mapping scheme
Creating a DAD file is required when using XML collections. A DAD file defines the
relationship between XML data and multiple relational tables. The XML Extender
uses the DAD file to:

v Compose an XML document from relational data

v Decompose an XML document to relational data

You can use either of two methods to map the data between the XML tables and
the DB2 table: SQL mapping and RDB_node mapping:

SQL mapping
Uses an SQL statement element to specify the SQL query for tables and
columns that are used to contain the XML data. SQL mapping can only be
used for composing XML documents.

RDB_node mapping
Uses an XML Extender-unique element, Relational Database node, or
RDB_node, which specifies tables, columns, conditions, and the order for
XML data. RDB_node mapping supports more complex mappings than an
SQL statement can provide. RDB_node mapping can be used for both
composing and decomposing XML documents.

The following sections describe how to create the DAD file, depending on the task
and the method you are using:

v Compose documents with SQL mapping. See “Composing XML documents with
SQL mapping” on page 84.

v Compose documents with RDB node mapping. See “Composing XML documents
with RDB_node mapping” on page 89.

When creating DAD files for composition, you can specify stylesheets. See
“Specifying a stylesheet for the XML document” on page 95.

v Decompose documents with RDB node mapping. See “Decomposing XML
documents with RDB_node mapping” on page 95.

© Copyright IBM Corp. 2000, 2001 83

Before you begin
v Map the relationship between your DB2 tables and the XML document. This step

should include mapping the hierarchy of the XML document and specifying how
the data in the document maps to a DB2 table.

v If you plan to validate the XML documents, insert the DTD for the XML document
you are composing or decomposing into the DTD reference table,
DB2XML.DTD_REF.

Composing XML documents with SQL mapping
Use SQL mapping when you are composing XML documents and want to use SQL.

Using the administration wizard
Use the following steps to create a DAD file using XML collection SQL mapping

To create a DAD file for composition using SQL mapping:

Use SQL mapping when you are composing XML documents and you want to use
an SQL statement to define the table and columns from which you will derive the
data in the XML document.

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Work with DAD files from the LaunchPad window. The Specify a DAD
windows opens.

3. Choose whether to edit an existing DAD file or to create a new DAD file.

To create a new DAD file:

a. Leave the File name field blank.

b. From the Type menu, select XML collection SQL mapping.

c. Click Next to open the Select Validation window.

To edit an existing DAD file:

a. Type the DAD file name in the File name field, or click ... to browse for an
existing DAD file.

b. Verify that the wizard recognizes the specified DAD file.

v If the wizard recognizes the specified DAD file, Next is selectable and
XML collection SQL mapping is displayed in the Type field.

v If the wizard does not recognize the specified DAD file, Next is not
selectable. Either retype the DAD file name, or click ... to browse again
for an existing DAD file. Correct the values of the entry field until Next is
selectable.

c. Click Next to open the Select Validation window.

4. In the Select Validation window, choose whether to validate your XML
documents with a DTD.

v To validate:

a. Click Validate XML documents with the DTD.

b. Select the DTD to be used for validation from the DTD ID menu.

If XML Extender does not find the specified DTD in the DTD reference table,
it searches for the specified DTD on the file system and uses it to validate.

v Click Do NOT validate XML documents with the DTD to continue without
validating your XML documents.

84 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

5. Click Next to open the Specify Text window.

6. Type the prolog name in the Prolog field, to specify the prolog of the XML
document to be composed.
<?xml version="1.0" ?>

If you are editing an existing DAD, the prolog is automatically displayed in the
Prolog field.

7. Type the document type of the XML document in the Doctype field of the
Specify Text window, pointing to the DTD for the XML document. For example:
! DOCTYPE ORDER SYSTEM "dxx_install/samples/dtd/getstart.dtd"

If you are editing an existing DAD, the document type is automatically
displayed in the Doctype field.

8. Click Next to open the Specify SQL Statement window.

9. Type a valid SQL SELECT statement in the SQL statement field. For
example:
SELECT o.order_key, customer_name, customer_email, p.part_key, color, quantity,
price, tax, ship_id, date, mode from order_tab o, part_tab p,

table (select db2xml.generate_unique()
as ship_id, date, mode, part_key from ship_tab) s

WHERE o.order_key = 1 and
p.price > 20000 and
p.order_key = o.order_key and
s.part_key = p.part_key

ORDER BY order_key, part_key, ship_id

If you are editing an existing DAD, the SQL statement is automatically
displayed in the SQL statement field.

10. Click Test SQL to test the validity of the SQL statement.

v If your SQL statement is valid, sample results are displayed in the Sample
results field.

v If your SQL statement is not valid, an error message is displayed in the
Sample results field. The error message instructs you to correct your SQL
SELECT statement and to try again.

11. Click Next to open the SQL Mapping window.

12. Select an element or attribute node to map from by clicking on it in the field on
the left of the SQL Mapping window.

Map the elements and attributes in the XML document to element and attribute
nodes that correspond to DB2 data. These nodes provide a path from the XML
data to the DB2 data.

v To add the root node:

a. Select the Root icon.

b. Click New Element to define a new node.

c. In the Details box, specify Node type as Element.

d. Enter the name of the top level node in the Node name field.

e. Click Add to create the new node.

You have created the root node or element, which is the parent to all the
other element and attribute nodes in the map. You can now add child
elements and attributes to this node.

v To add a child element or attribute node:

a. Click on a parent node in the field on the left to add a child element or
attribute.

Chapter 7. Working with XML collections 85

If you have not selected a parent node, New Element is not selectable.

b. Click New Element.

c. Select the node type from the Node type menu in the Details box.

The Node type menu displays only the node types that are valid at that
point in the map:

Element
Represents an XML element defined in the DTD associated with
the XML document. Used to associate the XML element with a
column in a DB2 table. An element node can have attribute
nodes, child element nodes, or text nodes. A bottom-level node
has a text node and column name associated with it in the tree
view.

Attribute
Represents an XML attribute defined in the DTD associated with
the XML document. It is used to associate the XML attribute with
a column in a DB2 table. An attribute node can have a text node
and has a column name associated with it in the tree view.

Text Specifies text content for an element or attribute node that has
content to be mapped to a relational table. A text node has a
column name associated with it in the tree view.

Table Specifies the table name for an element or attribute value to be
mapped to a relational table.

Column
Specifies the column name for an element or attribute value to
be mapped to a relational table.

Condition
Specifies a condition for the column.

d. Type the node name in the Node name field in the Details box. For
example:
Order

e. If you specified Attribute , Element or Text for a bottom-level element
as the Node type, select a column from the Column field in the Details
box. For example:
Customer_Name

Restriction: New columns cannot be created using the administration
wizard. If you specify Column as the node type, you can only select a
column that already exists in your DB2 database.

f. Click Add to add the new node.

You can modify a node later by clicking on it in the field on the left and
making any needed modifications to it in the Details box. Click Change
to update the element.

You can also add child elements or attributes to the node by highlighting
the node repeating the add process.

g. Continue editing the SQL map, or click Next to open the Specify a DAD
window.

v To remove a node:

a. Click on a node in the field on the left.

b. Click Remove.

86 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

c. Continue editing the SQL map, or click Next to open the Specify a DAD
window.

Note that if you remove a bottom-level node, another element will become a
bottom-level node and might need a column name defined for it.

13. Type the name of an output file for the modified DAD file in the File name field
of the Specify a DAD window.

14. Click Finish to return to the LaunchPad window.

Using the command line
Use SQL mapping notation when you are composing XML document and want to
use SQL.

The DAD file is an XML file that you can create using any text editor. The following
steps show fragments from the samples appendix, “Document access definition
files” on page 244. Please refer to these examples for more comprehensive
information and context.

1. Open a text editor.

2. Create the DAD header:
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "path/dad.dtd"> --> the path and file name of the DTD

for the DAD

3. Insert the <DAD></DAD> tags.

4. After the <DAD> tag, specify the DTD ID that associates the DAD file with the
XML document DTD.
<dtdid>path/dtd_name.dtd> --> the path and file name

of the DTD for your application

5. Specify whether to validate (that is, to use a DTD to ensure that the XML
document is a valid XML document). For example:
<validation>NO</validation> --> specify YES or NO

6. Use the <Xcollection> element to define the access and storage method as
XML collection. The access and storage methods define that the XML
document will have content derived from data stored in DB2 tables.
<Xcollection>
</Xcollection>

7. Specify one or more SQL statements to query or insert data from or into DB2
tables. See “Mapping scheme requirements” on page 57 for guidelines. For
example, you specify a single SQL query like in the following example:
<SQL_stmt>
SELECT o.order_key, customer_name, customer_email, p.part_key, color, quantity,
price, tax, ship_id, date, mode from order_tab o, part_tab p,
table (select db2xml.generate_unique()
as ship_id, date, mode, part_key from ship_tab) s

WHERE o.order_key = 1 and
p.price > 20000 and
p.order_key = o.order_key and
s.part_key = p.part_key

ORDER BY order_key, part_key, ship_id
</SQL_stmt>

8. Add the following prolog information:
<prolog>?xml version="1.0"?</prolog>

This exact text is required.

9. Add the <doctype></doctype> tags. For example:
<doctype>! DOCTYPE Order SYSTEM "dxx_install/samples/dtd/getstart.dtd"</doctype>

Chapter 7. Working with XML collections 87

If you need to specify an encoding value for internationalization, add the
ENCODING attribute and value. See “Appendix C. Code page considerations”
on page 251 to learn about encoding issues in an client/server environment.

10. Define the root node using the <root_node></root_node> tags. Inside the
root_node, you specify the elements and attributes that make up the XML
document.

11. Map the elements and attributes in the XML document to element and attribute
nodes that correspond to DB2 data. These nodes provide a path from the XML
data to the DB2 data.

a. Define an <element_node> for each element in your XML document that
maps to a column in a DB2 table.
<element_node name="name"></element_node>

An element_node can have the following nodes:

v attribute_node

v child element_node

v text_node

b. Define an <attribute_node> for each attribute in your XML document that
maps to a column in a DB2 table. See the example DTDs at the beginning
of this section for SQL mapping, as well as the DTD for the DAD file in
“Appendix A. DTD for the DAD file” on page 237, which provides the full
syntax for the DAD file.

For example, you need an attribute key for an element <Order>. The value
of key is stored in a column PART_KEY.

DAD file: In the DAD file, create an attribute node for key and indicate the
table where the value of key is stored.
<attribute_node name="key">

<column name="part_key"/>
</attribute_node>

Composed XML document: The value of key is taken from the
PART_KEY column.
<Order key="1">

12. Create a <text_node> for every element or attribute that has content that will
be derived from a DB2 table. The text node has a <column> element that
specifies from which column the content is provided.

For example, you might have an XML element <Tax> with a value that will be
taken from a column called TAX:

DAD element:
<element_node name="Tax">

<text_node>
<column name="tax"/>
</text_node>

</element_node>

The column name must be in the SQL statement at the beginning of the DAD
file.

Composed XML document:
<Tax>0.02</Tax>

The value 0.02 will be derived from the column TAX.

88 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

13. Ensure that you have an ending </root_node> tag after the last
</element_node> tag.

14. Ensure that you have an ending </Xcollection> tag after the </root_node> tag.

15. Ensure that you have an ending </DAD> tag after the </Xcollection> tag.

Composing XML documents with RDB_node mapping
Use RDB_node mapping to compose XML documents using a XML-like structure.

This method uses the <RDB_node> to specify DB2 tables, column, and conditions
for an element or attribute node. The <RDB_node> uses the following elements:

v <table>: defines the table corresponding to the element

v <column>: defines the column containing the corresponding element

v <condition>: optionally specifies a condition on the column

The child elements that are used in the <RDB_node> depend on the context of the
node and use the following rules:

If the node type is: RDB child element is used:

Table Column Condition1

Root element Y N Y

Attribute Y Y optional

Text Y Y optional

(1) Required with multiple tables

Using the administration wizard
To create a DAD for composition, using RDB_node mapping:

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Work with DAD files from the LaunchPad window. The Specify a DAD
window opens.

3. Choose whether to edit an existing DAD file or to create a new DAD.

To edit an existing DAD:

a. Type the DAD file name in the File name field or click ... to browse for an
existing DAD.

b. Verify that the wizard recognizes the specified DAD file.

v If the wizard recognizes the specified DAD file, Next is selectable, and
XML collection RDB node mapping is displayed in the Type field.

v If the wizard does not recognize the specified DAD file, Next is not
selectable. Either retype the DAD file name in the File name field or
click ... to browse again for an existing DAD file. Continue these steps
until Next is selectable.

c. Click Next to open the Select Validation window.

To create a new DAD:

a. Leave the File name field blank.

b. Select XML collection RDB_node mapping from the Type menu.

c. Click Next to open the Select Validation window.

Chapter 7. Working with XML collections 89

4. In the Select Validation window, choose whether to validate your XML
documents with a DTD.

v To validate:

a. Click Validate XML documents with the DTD.

b. Select the DTD to be used for validation from the DTD ID menu.

If XML Extender does not find the specified DTD in the DTD reference table,
it searches for the specified DTD on the file system and uses it to validate.

v Click Do NOT validate XML documents with the DTD to continue without
validating your XML documents.

5. Click Next to open the Specify Text window.

6. Type the prolog name in the Prolog field of the Specify Text window.
<?xml version="1.0" ?>

If you are editing an existing DAD, the prolog is automatically displayed in the
Prolog field.

7. Enter the document type of the XML document in the Doctype field of the
Specify Text window.

If you are editing an existing DAD, the document type is automatically
displayed in the Doctype field.

8. Click NEXT to open the RDB Mapping window.

9. Select an element or attribute node to map from by clicking on it in the field on
the left of the RDB Mapping window.

Map the elements and attributes in the XML document to element and attribute
nodes which correspond to DB2 data. These nodes provide a path from the
XML data to the DB2 data.

10. To add the root node:

a. Select the Root icon.

b. Click New Element to define a new node.

c. In the Details box, specify Node type as Element.

d. Enter the name of the top level node in the Node name field.

e. Click Add to create the new node.

You have created the root node or element, which is the parent to all the
other element and attribute nodes in the map. The root node has table
child elements and a join condition.

f. Add table nodes for each table that is part of the collection.

1) Highlight the root node name and select New Element.

2) In the Details box, specify Node type as Table.

3) Select the name of the table from Table name. The table must already
exist.

4) Click Add to add the table node.

5) Repeat these steps for each table.

g. Add a join condition for the table nodes.

1) Highlight the root node name and select New Element.

2) In the Details box, specify Node type as Condition.

3) In the Condition field, enter the join condition using the following
syntax:
table_name.table_column = table_name.table_column AND
table_name.table_column = table_name.table_column ...

90 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

4) Click Add to add the condition.

11. To add an element or attribute node:

a. Click on a parent node in the field on the left to add a child element or
attribute.

b. Click New Element. If you have not selected a parent node, New Element
is not selectable.

c. Select a node type from the Node type menu in the DETAILS box.

The Node type menu displays only the node types that are valid at that
point in the map. Element or Attribute.

d. Specify a node name in the Node name field.

e. Click Add to add the new node.

f. To map the contents of an element or attribute node to a relational
table:

1) Specify a text node.

a) Click the parent node.

b) Click New Element.

c) In the Node type field, select Text.

d) Select Add to add the node.

2) Add a table node.

a) Select the text node you just created and click New Element.

b) In the Node type field, select Table and specify a table name for
the element.

c) Click Add to add the node.

3) Add a column node.

a) Select the text node again and click New Element.

b) In the Node type field, select Column and specify a column name
for the element.

c) Click Add to add the node.

Restriction: New columns cannot be created using the administration
wizard. If you specify Column as the node type, you can only select a
column that already exists in your DB2 database.

4) Optionally add a condition for the column.

a) Select the text node again and click New Element.

b) In the Node type field, select Condition and the condition with the
syntax:
column_name LIKE|<|>|= value

c) Click Add to add the node.

g. Continue editing the RDB map or click Next to open the Specify a DAD
window.

12. To remove a node:

a. Click on a node in the field on the left.

b. Click Remove.

c. Continue editing the RDB_node map or click Next to open the Specify a
DAD window.

13. Type in an output file name for the modified DAD in the File name field of the
Specify a DAD window.

14. Click Finish to remove the node and return to the LaunchPad window.

Chapter 7. Working with XML collections 91

Using the command line
The DAD file is an XML file that you can create using any text editor. The following
steps show fragments from the samples appendix, “Document access definition
files” on page 244. Please refer to these examples for more comprehensive
information and context.

1. Open a text editor.

2. Create the DAD header:
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "path/dad.dtd"> --> the path and file name of the DTD

for the DAD

3. Insert the <DAD></DAD> tags.

4. After the <DAD> tag, specify the DTD ID that associates the DAD file with the
XML document DTD.
<dtdid>path/dtd_name.dtd> --> the path and file name of the DTD

for your application

5. Specify whether to validate (that is, to use a DTD to ensure that the XML
document is a valid XML document). For example:
<validation>NO</validation> --> specify YES or NO

6. Use the <Xcollection> element to define the access and storage method as
XML collection. The access and storage methods define that the XML data is
stored in a collection of DB2 tables.
<Xcollection>
</Xcollection>

7. Add the following prolog information:
<prolog>?xml version="1.0"?</prolog>

This exact text is required.

8. Add the <doctype></doctype> tags. For example:
<doctype>! DOCTYPE Order SYSTEM "dxx_install/samples/dtd/getstart.dtd"</doctype>

If you need to specify an encoding value for internationalization, add the
ENCODING attribute and value. See “Appendix C. Code page considerations”
on page 251 to learn about encoding issues in an client/server environment.

9. Define the root node using the <root_node>. Inside the root_node, you specify
the elements and attributes that make up the XML document.

10. Map the elements and attributes in the XML document to element and attribute
nodes that correspond to DB2 data. These nodes provide a path from the XML
data to the DB2 data.

a. Define a root element_node. This element_node contains:

v An RDB_node which specifies table_nodes with a join condition to
specify the collection

v Child elements

v Attributes

To specify the table nodes and condition:

1) Create an RDB_node element: For example:
<RDB_node>
</RDB_node>

2) Define a <table_node> for each table that contains data to be included
in the XML document. For example, if you have three tables,
ORDER_TAB, PART_TAB, and SHIP_TAB, that have column data to
be in the document, create a table node for each. For example:

92 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

<RDB_node>
<table name="ORDER_TAB">
<table name="PART_TAB">
<table name="SHIP_TAB"></RDB_node>

3) Optionally, specify a key column for each table when you plan to
enable this collection. The key attribute is not normally required for
composition; however, when you enable a collection, the DAD file used
must support both composition and decomposition. For example:
<RDB_node>
<table name="ORDER_TAB" key="order_key">
<table name="PART_TAB" key="part_key">
<table name="SHIP_TAB" key="date mode">
</RDB_node>

4) Define a join condition for the tables in the collection. The syntax is
table_name.table_column = table_name.table_column AND
table_name.table_column = table_name.table_column ...

For example:
<RDB_node>
<table name="ORDER_TAB">
<table name="PART_TAB">
<table name="SHIP_TAB">
<condition>

order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key

</condition>
</RDB_node>

b. Define an <element_node> tag for each element in your XML document
that maps to a column in a DB2 table. For example:
<element_node name="name">
</element_node>

An element node can have one of the following types of elements:

v <text_node>: to specify that the element has content to a DB2 table; the
element does not have child elements

v <attribute_node>: to specify an attribute. Attribute nodes are defined in
the next step.

The text_node contains an <RDB_node> to map content to a DB2 table
and column name.

RDB_nodes are used for bottom-level elements that have content to map
to a DB2 table. An RDB_node has the following child elements:

v <table>: defines the table corresponding to the element

v <column>: defines the column containing the corresponding element and
specifies the column type with the type attribute

v <condition>: optionally specifies a condition on the column

For example, you might have an XML element <Tax> that maps to a
column called TAX:

XML document:
<Tax>0.02</Tax>

In this case, you want the value 0.02 to be a value in the column TAX.

Chapter 7. Working with XML collections 93

<element_node name="Tax">
<text_node>

<RDB_node>
<table name="part_tab"/>
<column name="tax"/>

</RDB_node>
</text_node>

</element_node>

In this example, the <RDB_node> specifies that the value of the <Tax>
element is a text value, the data is stored in the PART_TAB table in the
TAX column.

See the example DAD files in “Document access definition files” on
page 244 for RDB_node mapping, as well as the DTD for the DAD file in
“Appendix A. DTD for the DAD file” on page 237, which provides the full
syntax for the DAD file.

c. Optionally, add a type attribute to each <column> element when you plan
to enable this collection. The type attribute is not normally required for
composition; however, when you enable a collection, the DAD file used
must support both composition and decomposition. For example:
<column name="tax" type="real"/>

d. Define an <attribute_node> for each attribute in your XML document that
maps to a column in a DB2 table. For example:
<attribute_node name="key">
</attribute_node>

The attribute_node has an <RDB_node> to map the attribute value to a
DB2 table and column. An <RDB_node> has the following child elements:

v <table>: defines the table corresponding to the element

v <column>: defines the column containing the corresponding element

v <condition>: optionally specifies a condition on the column

For example, you might want to have an attribute key for an element
<Order>. The value of key needs to be stored in a column PART_KEY. In
the DAD file, create an <attribute_node> for key and indicate the table
where the value is to be stored.

DAD file:
<attribute_node name="key">
<RDB_node>
<table name="part_tab">
<column name="part_key"/>

<RDB_node>
</attribute_node>

Composed XML document:
<Order key="1">

11. Ensure that you have an ending </root_node> tag after the last
</element_node> tag.

12. Ensure that you have an ending </Xcollection> tag after the </root_node> tag.

13. Ensure that you have an ending </DAD> tag after the </Xcollection> tag.

94 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Specifying a stylesheet for the XML document
When composing documents, the XML Extender also supports processing
instructions for stylesheets, using the <stylesheet> element. The processing
instructions must be inside the <Xcollection> root element, located with the
<doctype> and <prolog> defined for the XML document structure. For example:
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\dtd\dad.dtd">
<DAD>
<SQL_stmt>

...
</SQL_stmt>
<Xcollection>
...
<prolog>...</prolog>
<doctype>...</doctype>
<stylesheet>?xml-stylesheet type="text/css" href="order.css"?</stylesheet>
<root_node>...</root_node>
...

</Xcollection>
...
</DAD>

Decomposing XML documents with RDB_node mapping
Use RDB_node mapping to decompose XML documents. This method uses the
<RDB_node> to specify DB2 tables, column, and conditions for an element or
attribute node. The <RDB_node> uses the following elements:

v <table>: defines the table corresponding to the element

v <column>: defines the column containing the corresponding element

v <condition>: optionally specifies a condition on the column

The child elements that are used in the <RDB_node> depend on the context of the
node and use the following rules:

If the node type is: RDB child element is used:

Table Column Condition1

Root element Y N Y

Attribute Y Y optional

Text Y Y optional

(1) Required with multiple tables

Using the administration wizard
1. Set up and start the administration wizard. See “Starting the administration

wizard” on page 65 for details.

2. Click Work with DAD files from the LaunchPad window. The Specify a DAD
windows opens.

3. Choose whether to edit an existing DAD file or to create a new DAD.

To edit an existing DAD:

a. Type the DAD file name in the File name field or click ... to browse for an
existing DAD.

b. Verify that the wizard recognizes the specified DAD file.

v If the wizard recognizes the specified DAD file, Next is selectable, and
XML collection RDB node mapping is displayed in the Type field.

Chapter 7. Working with XML collections 95

v If the wizard does not recognize the specified DAD file, Next is not
selectable. Either retype the DAD file name in the File name field or
click ... to browse again for an existing DAD file. Continue these steps
until Next is selectable.

c. Click Next to open the Select Validation window.

To create a new DAD:

a. Leave the File name field blank.

b. Select XML collection RDB_node mapping from the Type menu.

c. Click Next to open the Select Validation window.

4. In the Select Validation window, choose whether to validate your XML
documents with a DTD.

v To validate:

a. Click Validate XML documents with the DTD.

b. Select the DTD to be used for validation from the DTD ID menu.

If XML Extender does not find the specified DTD in the DTD reference table,
it searches for the specified DTD on the file system and uses it to validate.

v Click Do NOT validate XML documents with the DTD to continue without
validating your XML documents.

5. Click Next to open the Specify Text window.

6. If you are decomposing an XML document only, ignore the Prolog field. If you
are using the DAD file for both composition and decomposition, type the prolog
name in the Prolog field of the Specify Text window. The prolog is not required
if you are decomposing XML documents into DB2 data.
<?xml version="1.0"?>

If you are editing an existing DAD, the prolog is automatically displayed in the
Prolog field.

7. If you are decomposing an XML document only, ignore the Doctype field. If
you are using the DAD file for both composition and decomposition, enter the
document type of the XML document in the Doctype field

If you are editing an existing DAD, the document type is automatically
displayed in the Doctype field.

8. Click NEXT to open the RDB Mapping window.

9. Select an element or attribute node to map from by clicking on it in the field on
the left of the RDB Mapping window.

Map the elements and attributes in the XML document to element and attribute
nodes which correspond to DB2 data. These nodes provide a path from the
XML data to the DB2 data.

10. To add the root node:

a. Select the Root icon.

b. Click New Element to define a new node.

c. In the Details box, specify Node type as Element.

d. Enter the name of the top level node in the Node name field.

e. Click Add to create the new node.

You have created the root node or element, which is the parent to all the
other element and attribute nodes in the map. The root node has table
child elements and a join condition.

f. Add table nodes for each table that is part of the collection.

96 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

1) Highlight the root node name and select New Element.

2) In the Details box, specify Node type as Table.

3) Select the name of the table from Table name. The table must already
exist.

4) Specify a key column for the table in the Table key field.

5) Click Add to add the table node.

6) Repeat these steps for each table.

g. Add a join condition for the table nodes.

1) Highlight the root node name and select New Element.

2) In the Details box, specify Node type as Condition.

3) In the Condition field, enter the join condition using the following
syntax:
table_name.table_column = table_name.table_column AND
table_name.table_column = table_name.table_column ...

4) Click Add to add the condition.

You can now add child elements and attributes to this node.

11. To add an element or attribute node:

a. Click on a parent node in the field on the left to add a child element or
attribute.

If you have not selected a parent node, New is not selectable.

b. Click New Element.

c. Select a node type from the Node type menu in the DETAILS box.

The Node type menu displays only the node types that are valid at that
point in the map. Element or Attribute.

d. Specify a node name in the Node name field.

e. Click Add to add the new node.

f. To map the contents of an element or attribute node to a relational
table:

1) Specify a text node.

a) Click the parent node.

b) Click New Element.

c) In the Node type field, select Text.

d) Select Add to add the node.

2) Add a table node.

a) Select the text node you just created and click New Element.

b) In the Node type field, select Table and specify a table name for
the element.

c) Click Add to add the node.

3) Add a column node.

a) Select the text node again and click New Element.

b) In the Node type field, select Column and specify a column name
for the element.

c) Specify a base data type for the column in the Type field, to specify
what type the column must be to store the untagged data.

d) Click Add to add the node.

Chapter 7. Working with XML collections 97

If you need to specify an encoding value for internationalization, add the
ENCODING attribute and value. See “Appendix C. Code page considerations”
on page 251 to learn about encoding issues in an client/server environment.

9. Define the root_node using the <root_node></root_node> tags. Inside the
root_node, you specify the elements and attributes that make up the XML
document.

10. After the <root_node> tag, map the elements and attributes in the XML
document to element and attribute nodes that correspond to DB2 data. These
nodes provide a path from the XML data to the DB2 data.

a. Define a top level, root element_node. This element_node contains:

v Table nodes with a join condition to specify the collection.

v Child elements

v Attributes

To specify the table nodes and condition:

1) Create an RDB_node element: For example:
<RDB_node>
</RDB_node>

2) Define a <table_node> for each table that contains data to be included
in the XML document. For example, if you have three tables,
ORDER_TAB, PART_TAB, and SHIP_TAB, that have column data to
be in the document, create a table node for each. For example:
<RDB_node>
<table name="ORDER_TAB">
<table name="PART_TAB">
<table name="SHIP_TAB"></RDB_node>

3) Define a join condition for the tables in the collection. The syntax is:
table_name.table_column = table_name.table_column AND
table_name.table_column = table_name.table_column ...

For example:
<RDB_node>
<table name="ORDER_TAB">
<table name="PART_TAB">
<table name="SHIP_TAB">
<condition>

order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key

</condition>
</RDB_node>

4) Specify a primary key for each table. The primary key consists of a
single column or multiple columns, called a composite key. To specify
the primary key, add an attribute key to the table element of the
RDB_node. The following example defines a primary key for each of
the tables in the RDB_node of the root element_node Order:
<element_node name="Order">

<RDB_node>
<table name="order_tab" key="order_key"/>
<table name="part_tab" key="part_key price"/>
<table name="ship_tab" key="date mode"/>
<condition>

order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key

</condition>
<RDB_node>

Chapter 7. Working with XML collections 99

The information specified for decomposition is ignored when composing
an XML document.

The key attribute is required for decomposition, and when you enable a
collection because the DAD file used must support both composition
and decomposition.

b. Define an <element_node> tag for each element in your XML document
that maps to a column in a DB2 table. For example:
<element_node name="name">
</element_node>

An element node can have one of the following types of elements:

v <text_node>: to specify that the element has content to a DB2 table; in
this case it does not have child elements.

v <attribute_node>: to specify an attribute; attribute nodes are defined in
the next step

v child elements

The text_node contains an RDB_node to map content to a DB2 table and
column name.

RDB_nodes are used for bottom-level elements that have content to map
to a DB2 table. An RDB_node has the following child elements:

v <table>: defines the table corresponding to the element

v <column>: defines the column containing the corresponding element

v <condition>: optionally specifies a condition on the column

For example, you might have an XML element <Tax> for which you want to
store the untagged content in a column called TAX:

XML document:
<Tax>0.02</Tax>

In this case, you want the value 0.02 to be stored in the column TAX.

In the DAD file, you specify an <RDB_node> to map the XML element to
the DB2 table and column.

DAD file:
<element_node name="Tax">

<text_node>
<RDB_node>

<table name="part_tab"/>
<column name="tax"/>

</RDB_node>
</text_node>

</element_node>

The <RDB_node> specifies that the value of the <Tax> element is a text
value, the data is stored in the PART_TAB table in the TAX column.

c. Define an <attribute_node> for each attribute in your XML document that
maps to a column in a DB2 table. For example:
<attribute_node name="key">
</attribute_node>

100 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

The attribute_node has an RDB_node to map the attribute value to a DB2
table and column. An RDB_node has the following child elements:

v <table>: defines the table corresponding to the element

v <column>: defines the column containing the corresponding element

v <condition>: optionally specifies a condition on the column

For example, you might have an attribute key for an element <Order>. The
value of key needs to be stored in a column PART_KEY.

XML document:
<Order key="1">

In the DAD file, create an attribute_node for key and indicate the table
where the value of 1 is to be stored.

DAD file:
<attribute_node name="key">
<RDB_node>
<table name="part_tab">
<column name="part_key"/>

<RDB_node>
</attribute_node>

11. Specify the column type for the RDB_node for each attribute_node and
text_node. This ensures the correct data type for each column where the
untagged data will be stored. To specify the column types, add the attribute
type to the column element. The following example defines the column type as
an INTEGER:
<attribute_node name="key">

<RDB_node>
<table name="order_tab"/>
<column name="order_key" type="integer"/>

</RDB_node>
</attribute_node>

12. Ensure that you have an ending </root_node> tag after the last
</element_node> tag.

13. Ensure that you have an ending </Xcollection> tag after the </root_node> tag.

14. Ensure that you have an ending </DAD> tag after the </Xcollection> tag.

Enabling XML collections
Enabling an XML collection parses the DAD file to identify the tables and columns
related to the XML document, and records control information in the XML_USAGE
table. Enabling an XML collection is optional for:

v Decomposing an XML document and storing the data in new DB2 tables

v Composing an XML document from existing data in multiple DB2 tables

If the same DAD file is used for composing and decomposing, you can enable the
collection for both composition and decomposition.

You can enable an XML collection through the XML Extender administration wizard,
using the DXXADM command with the enable_collection option, or you can use the
XML Extender stored procedure dxxEnableCollection().

Chapter 7. Working with XML collections 101

Using the administration wizard
Use the following steps to enable an XML collection.

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Work with XML Collections from the LaunchPad window. The Select a
Task window opens.

3. Click Enable a Collection and then Next. The Enable a Collection window
opens.

4. Select the name of the collection you want to enable in the Collection name
field from the pull-down menu.

5. Type the DAD file name in the DAD file name field or click ... to browse for an
existing DAD file.

6. Optionally, type the name of a previously created table space in the Table
space field.

The table space will contain new DB2 tables generated for decomposition.

7. Click FINISH to enable the collection and return to the LaunchPad window.

v If the collection is successfully enabled, an Enabled collection is
successful message is displayed.

v If the collection is not successfully enabled, an error message is displayed.
Continue the preceding steps until the collection is successfully enabled.

Using the command line
To enable an XML collection, enter the DXXADM command:

Syntax:

�� enable_collection -a subsystem_name collection DAD_file �

�
-t tablespace

�

Parameters:

-a subsystem_name
The name of the DB2 subsystem.

collection
The name of the XML collection. This value is used as a parameter for the
XML collection stored procedures.

DAD_file
The name of the file that contains the document access definition (DAD).

tablespace
An existing table space that contains new DB2 tables that were generated
for decomposition. If not specified, the default table space is used.

Example: The following example enables a collection called sales_ord in the
database SALES_DB using the command line. The DAD file uses SQL mapping
and can be found in “DAD file: XML collection - SQL mapping” on page 245.
dxxadm enable_collection -a SUBSYS1 using ORDRPSC SALES_ORD

'ORDPRJ.WORK.DAD(GETSTART_XCOLLECTION)'

102 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

After you enable the XML collection, you can compose or decompose XML
documents using the XML Extender stored procedures.

Disabling XML collections
Disabling an XML collection removes the record in the XML_USAGE table that
identify tables and columns as part of a collection. It does not drop any data tables.
You disable a collection when you want to update the DAD and need to re-enable a
collection, or to drop a collection.

You can disable an XML collection through the XML Extender administration wizard,
using the DXXADM command with the disable_collection option, or using the XML
Extender stored procedure dxxDisableCollection().

Using the administration wizard
Use the following steps to disable an XML collection.

1. Set up and start the administration wizard. See “Starting the administration
wizard” on page 65 for details.

2. Click Work with XML Collections from the LaunchPad window to view the
XML Extender collection related tasks. The Select a Task window opens.

3. Click Disable an XML Collection and then Next to disable an XML collection.
The Disable a Collection window opens.

4. Type the name of the collection you want to disable in the Collection name
field.

5. Click Finish to disable the collection and return to the LaunchPad window.

v If the collection is successfully disabled, an Disabled collection is
successful message is displayed.

v If the collection is not successfully disabled, an error box is displayed.
Continue the preceding steps until the collection is successfully disabled.

Using the command line
To disable an XML collection, enter the DXXADM command:

Syntax:

�� dxxadm disable_collection -a subsystem_name collection �

Parameters:

- a subsystem_name
The name of the DB2 subsystem.

collection
The name of the XML collection. This value is used as a parameter for the
XML collection stored procedures.

Example:
dxxadm disable_collection -a SUBSYS1 SALES_ORD

Chapter 7. Working with XML collections 103

104 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Part 3. Programming

This part describes programming techniques for managing your XML data.

© Copyright IBM Corp. 2000, 2001 105

106 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 8. Managing XML column data

When using XML columns, you store an entire XML document as column data. This
access and storage method allows you to keep the XML document intact, while
giving you the ability to index and search the document, retrieve data from the
document, and update the document. An XML column contains XML documents in
their native format in DB2 as column data. After you enable a database for XML,
the following user-defined types (UDTs) are available for your use:

XMLCLOB
XML document content that is stored as a character large object (CLOB) in
DB2

XMLVARCHAR
XML document content that is stored as a VARCHAR in DB2

XMLFile
XML document that is stored in a file on a local file system

You can create or alter application tables using XML UDTs as column data types.
These tables are known as XML tables. To learn how to create or alter a table for
XML, see “Creating or altering an XML table” on page 76.

After you enable a column for XML, you can begin managing the contents of the
XML column. After the XML column is created, you can perform the following
management tasks:

v Store XML documents in DB2

v Retrieve XML data or documents from DB2

v Update XML documents

v Delete XML data or documents

To perform these tasks, you can use two methods:

v Default casting functions, which cast the SQL base type to the XML Extender
user-defined types. A casting function converts instances of a data type (origin)
into instances of a different data type (target).

v XML Extender-provided user-defined functions (UDFs)

This book describes both methods for each task.

User-defined types and user-defined function names
The full name of a DB2 function is: schema-name.function-name, where
schema-name is an identifier that provides a logical grouping for the SQL objects.
The schema name for XML Extender UDFs is DB2XML. The DB2XML schema
name is also the qualifier for the XML Extender UDTs. In this book, references are
made only to the function name.

You can specify UDTs and UDFs without the schema name if you add the schema
to the function path. The function path is an ordered list of schema names. DB2
uses the order of schema names in the list to resolve references to functions and
UDTs. You can specify the function path by specifying the SQL statement SET
CURRENT FUNCTION PATH. This sets the function path in the CURRENT
FUNCTION PATH special register.

© Copyright IBM Corp. 2000, 2001 107

For the XML Extender, it is a good idea to add the DB2XML schema to the function
path. This allows you to enter XML Extender UDF and UDT names without having
to qualify them with DB2XML. The following example shows how to add the
DB2XML schema to the function path:
SET CURRENT FUNCTION PATH = DB2XML, CURRENT FUNCTION PATH

Important: Do not add DB2XML as the first schema in the function path if you log
on as DB2XML; DB2XML is automatically set as the first schema when you log on
as DB2XML. This generates an error condition because your function path will
begin with two DB2XML schemas.

Storing data
Using the XML Extender, you can insert intact XML documents into an XML column.
If you define side tables, the XML Extender automatically updates these tables.
When you store an XML document directly, the XML Extender stores the base type
as an XML type.

Task overview:

1. Ensure that you have created or updated the DAD file.

2. Determine what data type to use when you store the document.

3. Choose a method for storing the data in the DB2 table (casting functions or
UDFs).

4. Specify an SQL INSERT statement that specifies the XML table and column to
contain the XML document.

The XML Extender provides two methods for storing XML documents: default
casting functions and storage UDFs.

Table 13 shows when to use each method.

Table 13. The XML Extender storage functions

Base type Store in DB2 as...

XMLVARCHAR XMLCLOB XMLFILE

VARCHAR XMLVARCHAR() N/A XMLFileFromVarchar()

CLOB N/A XMLCLOB() XMLFileFromCLOB()

FILE XMLVarcharFromFile() XMLCLOBFromFile() XMLFILE

Use a default casting function
For each UDT, a default casting function exists to cast the SQL base type
to the UDT. You can use the XML Extender-provided casting functions in
your VALUES clause to insert data. Table 14 shows the provided casting
functions:

Table 14. The XML Extender default cast functions

Casting used in SELECT
clause

Return type Description

XMLVARCHAR(VARCHAR) XMLVARCHAR Input from memory buffer of
VARCHAR

XMLCLOB(CLOB) XMLCLOB Input from memory buffer of
CLOB or a CLOB locator

XMLFILE(VARCHAR) XMLFILE Only store file name

108 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Example: The following statement inserts a cast VARCHAR type into the
XMLVARCHAR type:
INSERT INTO sales_tab
VALUES('123456', 'Sriram Srinivasan', DB2XML.XMLVarchar(:xml_buff))

Use a storage UDF:
For each XML Extender UDT, a storage UDF exists to import data into DB2
from a resource other than its base type. For example, if you want to import
an XML file document to DB2 as a XMLCLOB, you can use the function
XMLCLOBFromFile().

Table 15 shows the storage functions provided by the XML Extender.

Table 15. The XML Extender storage UDFs

Storage user-defined
function

Return type Description

XMLVarcharFromFile() XMLVARCHAR Reads an XML document
from a file on the server and
returns the value of the
XMLVARCHAR type.

XMLCLOBFromFile() XMLCLOB Reads an XML document
from a file on the server and
returns the value of the
XMLCLOB type.

XMLFileFromVarchar() XMLFILE Reads an XML document
from memory as VARCHAR,
writes it to an external file,
and returns the value of the
XMLFILE type, which is the
file name.

XMLFileFromCLOB() XMLFILE Reads an XML document
from memory as CLOB or a
CLOB locator, writes it to an
external file, and returns the
value of the XMLFILE type,
which is the file name.

Example: The following statement stores a record in an XML table using
the XMLCLOBFromFile() function as an XMLCLOB.
EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

VALUES('1234', 'Sriram Srinivasan,
XMLCLOBFromFile('dxx_install/samples/cmd/getstart.xml'))

The preceding example imports the XML object from the file named
dxx_install/cmd/getstart.xml to the column ORDER in the table
SALES_TAB.

Retrieving data
Using the XML Extender, you can retrieve either an entire document or the contents
of elements and attributes. When you retrieve an XML column directly, the XML
Extender returns the UDT as the column type. For details on retrieving data, see
the following sections:

v “Retrieving an entire document” on page 110

v “Retrieving element contents and attribute values” on page 111

Chapter 8. Managing XML column data 109

The XML Extender provides two methods for retrieving data: default casting
functions and the Content() overloaded UDF. Table 16 shows when to use each
method.

Table 16. The XML Extender retrieval functions

XML type Retrieve from DB2 as...

VARCHAR CLOB FILE

XMLVARCHAR VARCHAR N/A Content()

XMLCLOB N/A XMLCLOB Content()

XMLFILE N/A Content() FILE

Retrieving an entire document
Task overview:

1. Ensure that you have stored the XML document in an XML table and determine
what data you want to retrieve.

2. Choose a method for retrieving the data in the DB2 table (casting functions or
UDFs).

3. If using the overloaded Content() UDF, determine which data type is associated
with the data that is being retrieved, and which data type is to be exported.

4. Specify an SQL query that specifies the XML table and column from which to
retrieve the XML document.

The XML Extender provides two methods for retrieving data:

Use a default casting function
Use the default casting function provided by DB2 for UDTs to convert an
XML UDT to an SQL base type, and then operate on it. You can use the
XML Extender-provided casting functions in your SELECT statement to
retrieve data. Table 17 shows the provided casting functions:

Table 17. The XML Extender default cast functions

Casting used in select
clause

Return type Description

varchar(XMLVARCHAR) VARCHAR XML document in VARCHAR

clob(XMLCLOB) CLOB XML document in CLOB

varchar(XMLFile) VARCHAR XML file name in VARCHAR

Example: The following example retrieves the XMLVARCHAR and stores it
in memory as a VARCHAR data type:
EXEC SQL SELECT DB2XML.Varchar(ORDER) from SALES_TAB

Use the Content() overloaded UDF
Use the Content() UDF to retrieve the document content from external
storage to memory, or export the document from internal storage to an
external file, a file external to DB2, on the DB2 server.

For example, you might have your XML document stored as XMLFILE and
you want to operate on it in memory, you can use the Content() UDF, which
can take an XMLFILE data type as input and return a CLOB.

The Content() UDF performs two different retrieval functions, depending on
the specified data type. It:

110 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Retrieves a document from external storage and puts it in memory
You can use Content() to retrieve the XML document to a memory
buffer or a CLOB locator (a host variable with a value that
represents a single LOB value in the database server) when the
document is stored as the external file . Use the following function
syntax, where xmlobj is the XML column being queried:

XMLFILE to CLOB: Retrieves data from a file and exports to a
CLOB locator.
Content(xmlobj XMLFile)

Retrieves a document from internal storage and exports it to an
external file

You can also use Content() to retrieve an XML document that is
stored inside DB2 as an XMLCLOB data type and export it to a file
on the database server file system. It returns the name of the file of
VARCHAR type. Use the following function syntax, where xmlobj is
the XML column that is being queried and filename is the external
file. XML type can be of XMLVARCHAR or XMLCLOB data type.

XML type to external file: Retrieves the XML content that is stored
as an XML data type and exports it to an external file.
Content(xmlobj XML type, filename varchar(512))

Where:

xmlobj Is the name of the XML column from which the XML
content is to be retrieved; xmlobj can be of type
XMLVARCHAR or XMLCLOB.

filename
Is the name of the file in which the XML data is to be
stored.

In the example below, a small C program segment with embedded SQL
(SQL statements coded within an application program) illustrates how an
XML document is retrieved from a file to memory. This example assumes
that the column ORDER is of the XMLFILE type.

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB_LOCATOR xml_buff;

EXEC SQL END DECLARE SECTION;
EXEC SQL CONNECT TO SALES_DB
EXEC SQL DECLARE c1 CURSOR FOR

SELECT Content(order) from sales_tab
EXEC SQL OPEN c1;

do {
EXEC SQL FETCH c1 INTO :xml_buff;
if (SQLCODE != 0) {

break;
}

else {
/* do whatever you need to do with the XML doc in buffer */
}

}
EXEC SQL CLOSE c1;
EXEC SQL CONNECT RESET;

Retrieving element contents and attribute values
You can retrieve (extract) the content of an element or an attribute value from one
or more XML documents (single document or collection document search). The

Chapter 8. Managing XML column data 111

XML Extender provides user-defined extracting functions that you can specify in the
SQL SELECT clause for each of the SQL data types.

Retrieving the content and values of elements and attributes is useful in developing
your applications, because you can access XML data as relational data. For
example, you might have 1000 XML documents that are stored in the column
ORDER in the table SALES_TAB. You can retrieve the names of all customers who
have ordered items using the following SQL statement with the extracting UDF in
the SELECT clause to retrieve this information:
SELECT extractVarchar(Order, '/Order/Customer/Name') from sales_order_view

WHERE price > 2500.00

In this example, the extracting UDF retrieves the element <customer> from the
column ORDER as a VARCHAR data type. The location path is
/Order/Customer/Name (see “Location path” on page 61 for location path syntax).
Additionally, the number of returned values is reduced by using a WHERE clause,
which specifies that only the contents of the <customer> element with a subelement
<ExtendedPrice> has a value greater than 2500.00.

To extract element content or attribute values: Use the extracting UDFs listed in
Table 18 on page 113 by using the following syntax as either table or scalar
functions:
extractretrieved_datatype(xmlobj, path)

Where:

retrieved_datatype
Is the data type that is returned from the extracting function; it can be one
of the following types:

v INTEGER

v SMALLINT

v DOUBLE

v REAL

v CHAR

v VARCHAR

v CLOB

v DATE

v TIME

v TIMESTAMP

v FILE

xmlobj Is the name of the XML column from which the element or attribute is to be
extracted. This column must be defined as one of the following XML
user-defined types:

v XMLVARCHAR

v XMLCLOB as LOCATOR

v XMLFILE

path Is the location path of the element or attribute in the XML document (such
as /Order/Customer/Name). See “Location path” on page 61 for location
path syntax.

112 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Important: Note that the extracting UDFs support location paths that have
predicates with attributes, but not elements. For example, the following
predicate is supported:
'/Order/Part[@color="black "]/ExtendedPrice'

The following predicate is not supported:
'/Order/Part/Shipment/[Shipdate < "11/25/00"]'

Table 18 shows the extracting functions, both in scalar and table format:

Table 18. The XML Extender extracting functions

Scalar function Table function Returned column
name (table
function)

Return type

extractInteger() extractIntegers() returnedInteger INTEGER

extractSmallint() extractSmallints() returnedSmallint SMALLINT

extractDouble() extractDoubles() returnedDouble DOUBLE

extractReal() extractReals() returnedReal REAL

extractChar() extractChars() returnedChar CHAR

extractVarchar() extractVarchars() returnedVarchar VARCHAR

extractCLOB() extractCLOBs() returnedCLOB CLOB

extractDate() extractDates() returnedDate DATE

extractTime() extractTimes() returnedTime TIME

extractTimestamp() extractTimestamps() returnedTimestamp TIMESTAMP

Scalar function example:

In the following example, one value is inserted with the attribute value of key = ″1″.
The value is extracted as an integer and automatically converted to a DECIMAL
type.
CREATE TABLE t1(key decimal(3,2));
INSERT into t1 values
SELECT * from table(DB2XML.extractInteger(DB2XML.XMLFile

('c:\dxx\samples\xml\getstart.xml'), '/Order/@key="1"]'));
SELECT * from t1;

In the following example, each key value for the sales order is extracted as an
INTEGER
SELECT * from table(DB2XML.extractIntegers(DB2XML.XMLFile

('c:\dxx\samples\xml\getstart.xml'), '/Order/@key')) as x;

Updating XML data
With the XML Extender, you can update the entire XML document by replacing the
XML column data, or you can update the values of specified elements or attributes.

Task overview:

1. Ensure that you have stored the XML document in an XML table and determine
what data you want to retrieve.

2. Choose a method for updating the data in the DB2 table (casting functions or
UDFs).

3. Specify an SQL query that specifies the XML table and column to update.

Chapter 8. Managing XML column data 113

Important: When updating a column that is enabled for XML, the XML Extender
automatically updates the side tables to reflect the changes. Do not update these
tables directly without updating the original XML document that is stored in the XML
column by changing the corresponding XML element or attribute value. Such
updates can cause data inconsistency problems.

To update an XML document:

Use one of the following methods:

Use a default casting function
For each user-defined type (UDT), a default casting function exists to cast
the SQL base type to the UDT. You can use the XML Extender-provided
casting functions to update the XML document. Table 14 on page 108
shows the provided casting functions and assumes the column ORDER is
created of a different UDT provided by the XML Extender.

Example: Updates the XMLVARCHAR type from the cast VARCHAR type,
assuming that xml_buf is a host variable that is defined as a VARCHAR
type.
UPDATE sales_tab VALUES('123456', 'Sriram Srinivasan',
DB2XML.XMLVarchar(:xml_buff))

Use a storage UDF
For each of the XML Extender UDTs, a storage UDF exists to import data
into DB2 from a resource other than its base type. You can use a storage
UDF to update the entire XML document by replacing it.

Example: The following example updates an XML document using the
XMLVarcharFromFile() function:
UPDATE sales_tab

set order = XMLVarcharFromFile('dxx_install/samples/cmd/getstart.xml')
WHERE sales_person = 'Sriram Srinivasan'

The preceding example updates the XML object from the file named
dxx_install/samples/cmd/getstart.xml to the column ORDER in the table
SALES_TAB.

See Table 15 on page 109 for a list of the storage functions that the XML
Extender provides.

To update specific elements and attributes of an XML document:

Use the Update() UDF to specify specific changes, rather than updating the entire
document. Using the UDF, you specify a location path and the value of the element
or attribute represented by the location path to be replaced. (See “Location path” on
page 61 for location path syntax.) You do not need to edit the XML document: the
XML Extender makes the change for you.

The Update UDF updates the entire XML file, and reconstructs the file based on
information from the XML parser. See “How the Update function processes the XML
document” on page 184 to learn how the Update UDF processes the document and
for examples documents before and after they are updated.

Syntax:
Update(xmlobj, path, value)

Where:

114 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

xmlobj Is the name of the XML column for which the value of the element or
attribute is to be updated.

path Is the location path of the element or attribute that is to be updated. See
“Location path” on page 61 for location path syntax. See “Multiple
occurrence” on page 186 to learn about considerations for multiple
occurrence.

value Is the value that is to be updated.

Example: The following statement updates the value of the <Customer> element to
the character string IBM, using the Update() UDF:
UPDATE sales_tab

set order = Update(order, '/Order/Customer/Name', 'IBM')
WHERE sales_person = 'Sriram Srinivasan'

Multiple occurrence:

When a location path is provided in the Update() UDF, the content of every element
or attribute with a matching path is updated with the supplied value. This means
that if a document has multiple occurring locations paths, the Update function
replaces the existing values with the value provided in the value parameter.

Searching XML documents
Searching XML data is similar to retrieving XML data: both techniques retrieve data
for further manipulation but they search by using the WHERE clause to define
predicates as the criteria of retrieval.

The XML Extender provides several methods for searching XML documents in an
XML column, depending on your application’s needs. It provides the ability to
search document structure and return results based on element content and
attribute values. You can search a view of the XML column and its side tables,
directly search the side tables for better performance, or use extracting UDFs with
WHERE clauses. Additionally, you can use the DB2 Text Extender and search
column data within the structural content for a text string.

With the XML Extender you can use indexes on side-table columns, which contain
XML element content or attribute values that are extracted from XML documents,
for high-speed searching. By specifying the data type of an element or attribute, you
can search on SQL general data type or do range searches. For example, in our
purchase order example, you could search for all orders that have an extended
price of over 2500.00.

Additionally, you can use the DB2 UDB Text Extender to do structural text search or
full text search. For example, you could have a column RESUME that contains
resumes in XML format. You might want the name of all applicants who have Java
skills. You could use the DB2 Text Extender to search on the XML documents for all
resumes where the <skill> element contains the character string “JAVA”.

The following sections describe search methods:

v “Searching the XML document by structure” on page 116

v “Using the Text Extender for structural text search” on page 117

Chapter 8. Managing XML column data 115

Searching the XML document by structure
Using the XML Extender search features, you can search XML data in a column
based on the document structure, that is on elements and attributes. To search the
column data you use a SELECT statement in several ways and return a result set
based on the matches to the document elements and attributes. You can search
column data using the following methods:

v Searching with direct query on side tables

v Searching from a joined view

v Searching with extracting UDFs

v Searching on elements or attributes with multiple occurrence

The SQL statement returns the values of sales_person from the joined view
sales_order_view table which have line item orders with a price greater than
2500.00.

Searching with extracting UDFs
You can also use the XML Extender’s extracting UDFs to search on elements and
attributes, when you have not created indexes or side tables for the application
table. Using the extracting UDFs to scan the XML data is very expensive and
should only be used with WHERE clauses that restrict the number of XML
documents that are included in the search.

Example: The following statement searches with an extracting XML Extender UDF:
SELECT sales_person from sales_tab

WHERE extractVarchar(order, '/Order/Customer/Name')
like '%IBM%'

AND invoice_num > 100

In this example, the extracting UDF extracts </Order/Customer/Name> elements
with the value of IBM.

Searching on elements or attributes with multiple occurrence
When searching on elements or attributes that have multiple occurrence, use the
DISTINCT clause to prevent duplicate values.

Example: The following statement searches with the DISTINCT clause:
SELECT sales_person from sales_tab

WHERE invoice_num in
(SELECT DISTINCT invoice_num from part_side_tab
WHERE price > 2500.00)

In this example, the DAD file specifies that /Order/Part/Price has multiple
occurrence and creates a side table, PART_SIDE_TAB, for it. The PART_SIDE_TAB
table might have more than one row with the same invoice_num. Using DISTINCT
returns only unique values.

Using the Text Extender for structural text search
When searching the XML document structure, the XML Extender searches element
that are converted to general data types, but it does not search text. You can use
the DB2 UDB Text Extender for structural or full text search on a column that is
enabled for XML. The Text Extender supports XML document search in DB2 UDB
version 6.1 or higher. Text Extender is available on Windows operating systems,
AIX, and Sun Solaris.

Structural text search
Searches text strings that are based on the tree structure of the XML
document. For example, if you have the document structure of
/Order/Customer/Name and you want to search for the character string “IBM”
within the <Customer> subelement, you can use a structural text search.
The document might also have the string IBM in a <Comment> subelement
or as the name of part of a product. A structural text searches only in the
specified elements for the string. In this example, only the documents which
have IBM in the </Order/Customer/Name> subelement are found; the
documents that have IBM in other elements but not in the
</Order/Customer/Name> subelement are not returned.

Full text search
Searches text strings anywhere in the document structure, without regard to

Chapter 8. Managing XML column data 117

elements or attributes. Using the previous example, all documents that have
the string IBM would be returned regardless of where the character string
IBM occurs.

To use the Text Extender search, you must install the DB2 Text Extender and
enable your database and tables as described below. To learn how to use the Text
Extender search, see the chapter on searching with the Text Extender’s UDFs in
DB2 Universal Database for OS/390 and z/OS Text Extender Administration and
Programming, Version 7.

Enabling an XML column for the Text Extender
Assuming that you have an XML-enabled database, use the following steps to
enable the Text Extender to search the content of an XML-enabled column. For
example purposes, the database is named SALES_DB, the table is named ORDER,
and the XML column names are XVARCHAR and XCLOB:

1. See the install.txt file on the Extenders CD to learn how to install the Text
Extender.

2. Enter the txstart command from one of the following locations:

v On UNIX operating systems, enter the command from the instance owner’s
command prompt.

v On Windows NT, enter the command from the command window where
DB2INSTANCE is specified.

3. Open the Text Extender command line window. This step assumes that you
have database named SALES_DB and a table named ORDER, which has two
XML columns named XVARCHAR and XCLOB. You might need to run the
sample programs in dxx/samples/c.

4. Connect to the database. At the DB2TX command prompt, type:
'connect to SALES_DB'

5. Enable the database for the Text Extender.

From the DB2TX command prompt, type:
'enable database'

6. Enable the columns in the XML table for the Text Extender, defining the data
types of the XML document, the language, code pages, and other information
about the column.

v For the VARCHAR column XVARCHAR, type:
'enable text column order xvarchar function db2xml.varchartovarchar handle
varcharhandle ccsid 850 language us_english format xml indextype precise

indexproperty sections_enabled
documentmodel (Order) updateindex update'

v For the CLOB column XCLOB, type:
'enable text column order xclob function db2xml.clob handle clobhandle
ccsid 850 language us_english indextype precise updateindex update'

7. Check the status of the index.

v For column XVARCHAR, type: get index status order handle
varcharhandle

v For column XCLOB, type: get index status order handle clobhandle

8. Define the XML document model in a document model INI file called
desmodel.ini. This file is in: /db2tx/txins000 for UNIX and
/instance//db2tx/txins000 for Windows NT and sections in an initialization file.
For example, for the textmodel.ini:
;list of document models
[MODELS]
modelname=Order

118 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

; an 'Order' document model definition
; left side = section name identifier
; right side = section name tag

[Order]
Order = /Order
Order/Customer/Name = /Order/Customer/Name
Order/Customer/Email = /Order/Customer/Email
Order/Part/Shipment/ShipMode = /Order/Part/Shipment/ShipMode

Searching for text using the Text Extender
The Text Extender’s search capability works well with the XML Extender document
structural search. The recommended method is to create a query that searches on
the document element or attribute and uses the Text Extender to search the
element content or attribute values.

Example: The following statements search an XML document text with the Text
Extender. At the DB2 command window, type:
'connect to SALES_DB'
'select xvarchar from order where db2tx.contains(varcharhandle,
'model Order section(Order/Customer/Name) "Motors"')=1'
'select xclob from order where db2tx.contains(clobhandle,
'model Order section(Order/Customer/Name) "Motors"')=1'

The Text Extender Contains() UDF searches.

This example does not contain all of the steps that required to use the Text
Extender to search column data. To learn about the Text Extender search concepts
and capability, see the chapter on searching with the Text Extender’s UDFs in DB2
Universal Database for OS/390 and z/OS Text Extender Administration and
Programming, Version 7.

Deleting XML documents
Use the SQL DELETE statement to delete an XML document row from an XML
column. You can specify WHERE clauses to refine which documents are to be
deleted.

Example: The following statements delete all documents that have a value for
<ExtendedPrice> greater than 2500.00.
DELETE from sales_tab

WHERE invoice_num in
(SELECT invoice_num from part_side_tab
WHERE price > 2500.00)

Limitations when invoking functions from Java database (JDBC)
When using parameter markers in functions, a JDBC restriction requires that the
parameter marker for the function must be cast to the data type of the column into
which the returned data will be inserted. The function selection logic does not know
what data type the argument might turn out to be, and it cannot resolve the
reference.

As a result, JDBC cannot resolve the following code:
DB2XML.XMLdefault_casting_function(length)

Chapter 8. Managing XML column data 119

You can use the CAST specification to provide a type for the parameter marker,
such as VARCHAR, and then the function selection logic can proceed:
DB2XML.XMLdefault_casting_function(CAST(? AS cast_type(length))

Example 1: In the following example, the parameter marker is cast as VARCHAR.
The parameter being passed is an XML document, which is cast as
VARCHAR(1000) and inserted into the column ORDER.
String query = "insert into sales_tab(invoice_num, sales_person, order) values

(?,?,DB2XML.XMLVarchar(cast (? as varchar(1000))))";

Example 2: In the following example, the parameter marker is cast as VARCHAR.
The parameter being passed is a file name and its contents are converted to
VARCHAR and inserted into the column ORDER.
String query = "insert into sales_tab(invoice_num, sales_person, order) values

(?,?,DB2XML.XMLVarcharfromFILE(cast (? as varchar(1000))))";

120 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 9. Managing XML collection data

An XML collection is a set of relational tables that contain data that is mapped to
XML documents. This access and storage method lets you compose an XML
document from existing data, decompose an XML document, and use XML as an
interchange method.

The relational tables can be new tables that the XML Extender generates when
decomposing XML documents, or existing tables that have data that is to be used
with the XML Extender to generate XML documents for your applications. Column
data in these tables does not contain XML tags; it contains the content and values
that are associated with elements and attributes, respectively. Stored procedures
act as the access and storage method for storing, retrieving, updating, searching,
and deleting XML collection data.

The parameter limits used by the XML collection stored procedures are documented
in “Appendix D. The XML Extender limits” on page 263.

You can increase the CLOB sizes for the stored procedures results as documented
in “Increasing the CLOB limit” on page 190.

See the following sections for information on managing your XML collection:

v “Composing XML documents from DB2 data”

v “Decomposing XML documents into DB2 data” on page 130

Composing XML documents from DB2 data
Composition is the generation of a set of XML documents from relational data in an
XML collection. You can compose XML documents using stored procedures. To use
these stored procedures, you must create a DAD file, which specifies the mapping
between the XML document and the DB2 table structure. The stored procedures
use the DAD file to compose the XML document. See “Planning for XML
collections” on page 52 to learn how to create a DAD file.

Before you begin
v Map the structure of the XML document to the relational tables that contain the

contents of the element and attribute values.

v Select a mapping method: SQL mapping or RDB_node mapping.

v Prepare the DAD file. See “Planning for XML collections” on page 52 for
complete details.

v Optionally, enable the XML collection.

Composing the XML document
The XML Extender provides two stored procedures, dxxGenXML() and
dxxRetrieveXML(), to compose XML documents.

dxxGenXML()
This stored procedure is used for applications that do occasional updates or
for applications that do not want the overhead of administering the XML
data. The stored procedure dxxGenXML() does not require an enabled
collection; it uses a DAD file instead.

© Copyright IBM Corp. 2000, 2001 121

The stored procedure dxxGenXML() constructs XML documents using data
that is stored in XML collection tables, which are specified by the
<Xcollection> element in the DAD file. This stored procedure inserts each
XML document as a row into a result table. You can also open a cursor on
the result table and fetch the result set. The result table should be created
by the application and always has at least one column of VARCHAR,
CLOB, XMLVARCHAR, or XMLCLOB type.

Additionally, if you specify the validation element in the DAD as YES, the
application must also create a validation column of type INTEGER in the
result table. You can specify any name for the validate column as long as
its data type is integer. The default column value for integer is 0. You do not
have to set the value. XML Extender will set the value to 1 if the document
is valid, otherwise it is 0

The stored procedure dxxGenXML() also allows you to specify the
maximum number of rows that are to be generated in the result table. This
shortens processing time. The stored procedure returns the actual number
of rows in the table, along with any return codes and messages.

The corresponding stored procedure for decomposition is dxxShredXML(); it
also takes the DAD as the input parameter and does not require that the
XML collection be enabled.

122 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

To compose an XML collection: dxxGenXML()

Embed a stored procedure call in your application using the following stored
procedure declaration:
dxxGenXML(CLOB(100K) DAD, /* input */

char(32) resultTabName, /* input */
char(30) result_column, /* input */
char(30) valid_column, /* input */
integer overrideType, /* input */
varchar(1024) override, /* input */
integer maxRows, /* input */
integer numRows, /* output */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

See “dxxGenXML()” on page 199 for the full syntax and examples.

Example: The following example composes an XML document:
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE is CLOB(100K) dad; /* DAD */
EXEC SQL DECLARE :dad VARIABLE CCSID 1047;

/* specifies the CCSID for DAD when running from USS */
/* to ensure that DB2 converts the code page correctly*/

char result_tab[32]; /* name of the result table */
char result_colname[32]; /* name of the result column */
char valid_colname[32]; /* name of the valid column, will set to NULL */
char override[2]; /* override, will set to NULL*/
short overrideType; /* defined in dxx.h */
short max_row; /* maximum number of rows */
short num_row; /* actual number of rows */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short dad_ind;
short rtab_ind;
short rcol_ind;
short vcol_ind;
short ovtype_ind;
short ov_ind;
short maxrow_ind;
short numrow_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

FILE *file_handle;
long file_length=0;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initialize the DAD CLOB object. */
file_handle = fopen("/dxx/samples/dad/getstart_xcollection.dad", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &dad.data,

1, FILE_SIZE, file_handle);
if (file_length == 0) {
printf ("Error reading dad file

/dxx/samples/dad/getstart_xcollection.dad\n");
rc = -1;
goto exit;

} else

Chapter 9. Managing XML collection data 123

dad.length = file_length;
}
else {
printf("Error opening dad file \n",);
rc = -1;
goto exit;

}
/* initialize host variable and indicators */
strcpy(result_tab,"xml_order_tab");
strcpy(result_colname, "xmlorder")
valid_colname = '\0';
override[0] = '\0';
overrideType = NO_OVERRIDE;
max_row = 500;
num_row = 0;
returnCode = 0;
msg_txt[0] = '\0';
dad_ind = 0;
rtab_ind = 0;
rcol_ind = 0;
vcol_ind = -1;
ov_ind = -1;
ovtype_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXGENXML" (:dad:dad_ind;

:result_tab:rtab_ind,
:result_colname:rcol_ind,
:valid_colname:vcol_ind,
:overrideType:ovtype_ind,:override:ov_ind,
:max_row:maxrow_ind,:num_row:numrow_ind,
:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

exit:
return rc;

The result table after the stored procedure is called contains 250 rows
because the SQL query specified in the DAD file generated 250 XML
documents.

dxxRetrieveXML()
This stored procedure is used for applications that make regular updates.
Because the same tasks are repeated, improved performance is important.
Enabling an XML collection and using the collection name in the stored
procedure improves performance.

The stored procedure dxxRetrieveXML() works the same as the stored
procedure dxxGenXML(), except that it takes the name of an enabled XML
collection instead of a DAD file. When an XML collection is enabled, a DAD
file is stored in the XML_USAGE table. Therefore, the XML Extender
retrieves the DAD file and, from this point forward, dxxRetrieveXML() is the
same as dxxGenXML().

124 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

dxxRetrieveXML() allows the same DAD file to be used for both
composition and decomposition. This stored procedure also can be used for
retrieving decomposed XML documents.

The corresponding stored procedure for decomposition is dxxInsertXML(); it
also takes the name of an enabled XML collection.

To compose an XML collection: dxxRetrieveXML()

Embed a stored procedure call in your application using the following stored
procedure declaration:
dxxRetrieveXML(char(32) collectionName, /* input */

char(32) resultTabName, /* input */
char(30) result_column, /* input */
char(30) valid_column, /* input */

integer overrideType, /* input */
varchar(1024) override, /* input */
integer maxRows, /* input */
integer numRows, /* output */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

See “dxxRetrieveXML()” on page 203 for full syntax and examples.

Example: The following example is of a call to dxxRetrieveXML(). It
assumes that a result table is created with the name of XML_ORDER_TAB
and it has one column of XMLVARCHAR type.
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char collectionName[32]; /* name of an XML collection */
char result_tab[32]; /* name of the result table */
char result_colname[32]; /* name of the result column */
char valid_colname[32]; /* name of the valid column, will set to NULL*/
char override[2]; /* override, will set to NULL*/
short overrideType; /* defined in dxx.h */
short max_row; /* maximum number of rows */
short num_row; /* actual number of rows */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short collectionName_ind;
short rtab_ind;
short rcol_ind;
short vcol_ind;
short ovtype_ind;
short ov_ind;
short maxrow_ind;
short numrow_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initial host variable and indicators */
strcpy(collection, "sales_ord");
strcpy(result_tab,"xml_order_tab");
strcpy(result_col,"xmlorder");
valid_colname[0] = '\0';
override[0] = '\0';
overrideType = NO_OVERRIDE;
max_row = 500;

Chapter 9. Managing XML collection data 125

num_row = 0;
returnCode = 0;
msg_txt[0] = '\0';
collectionName_ind = 0;
rtab_ind = 0;
rcol_ind = 0;
vcol_ind = -1;
ov_ind = -1;
ovtype_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXRETRIEVE" (:collectionName:collectionName_ind,

:result_tab:rtab_ind,
:result_colname:rcol_ind,
:valid_colname:vcol_ind,
:overrideType:ovtype_ind,:override:ov_ind,
:max_row:maxrow_ind,:num_row:numrow_ind,
:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

Dynamically overriding values in the DAD file
For dynamic queries you can use two optional parameters to override conditions in
the DAD file: override and overrideType. Based on the input from overrideType, the
application can override the <SQL_stmt> tag values for SQL mapping or the
conditions in RDB_nodes for RDB_node mapping in the DAD.

These parameters have the following values and rules:

overrideType
This parameter is a required input parameter (IN) that flags the type of the
override parameter. overrideType has the following values:

NO_OVERRIDE
Specifies not to override a condition in the DAD file.

SQL_OVERRIDE
Specifies to override a condition in DAD file with an SQL statement.

XML_OVERRIDE
Specifies to override a condition in the DAD file with an XPath-based
condition.

override
This parameter is an optional input parameter (IN) that specifies the override
condition for the DAD file. The input value syntax corresponds to the value
specified on the overrideType.

v If you specify NO_OVERRIDE, the input value is a NULL string.

v If you specify SQL_OVERRIDE, the input value is a valid SQL statement.
Required: If you use SQL_OVERRIDE and an SQL statement, you must use
the SQL mapping scheme in the DAD file. The input SQL statement
overrides the SQL statement specified by the <SQL_stmt> element in the
DAD file.

126 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

v If you use XML_OVERRIDE, the input value is a string which contains one or
more expressions. Required: If you use XML_OVERRIDE and an
expression, you must use the RDB_node mapping scheme in the DAD file.
The input XML expression overrides the RDB_node condition specified in the
DAD file. The expression uses the following syntax:

�� �

AND

simple location path = value
>
<
<>
>=
<=
LIKE

�

Where:

simple location path
A simple location path using syntax defined by XPath; see Table 10 on
page 62 for syntax.

operators
=, >, <, <>, >=, <=, and LIKE. Can have a space to separate the
operator from the other parts of the expression.

value
A numeric value or a single quoted string.

You can have optional spaces around the operations; spaces are mandatory
around the LIKE operator.

When the XML_OVERRIDE value is specified, the condition for the
RDB_node in the text_node or attribute_node that matches the simple
location path is overridden by the specified expression.

XML_OVERRIDE is not completely XPath compliant. The simple location
path is only used to identify the element or attribute that is mapped to a
column.

Examples:

The following examples show dynamic override using SQL_OVERRIDE and
XML_OVERRIDE. Most stored procedure examples in this book use
NO_OVERRIDE.

Example 1: A stored procedure using SQL_OVERRIDE.
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char collectionName[32]; /* name of an XML collection */
char result_tab[32]; /* name of the result table */
char result_colname[32]; /* name of the result column */
char valid_colname[32]; /* name of the valid column, will set to NULL*/
char override[512]; /* override */
short overrideType; /* defined in dxx.h */
short max_row; /* maximum number of rows */

Chapter 9. Managing XML collection data 127

short num_row; /* actual number of rows */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short collectionName_ind;
short rtab_ind;
short rcol_ind;
short vcol_ind;
short ovtype_ind;
short ov_ind;
short maxrow_ind;
short numrow_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;
float price_value;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initial host variable and indicators */
strcpy(collection, "sales_ord");
strcpy(result_tab,"xml_order_tab");
strcpy(result_col,"xmlorder");
valid_colname[0] = '\0';

/* get the price_value from some place, such as from data */
price_value = 1000.00 /* for example */

/* specify the override */
sprintf(override,

" SELECT o.order_key, customer, p.part_key, quatity, price,
tax, ship_id, date, mode

FROM order_tab o, part_tab p,
table(select db2xml.generate_unique()
as ship_id, date, mode from ship_tab) s

WHERE p.price > %d and s.date >'1996-06_01' AND
p.order_key = o.order_key and s.part_key = p.part_key",
price_value);

overrideType = SQL_OVERRIDE;max_row = 0;
num_row = 0;
returnCode = 0;
msg_txt[0] = '\0';
collectionName_ind = 0;
rtab_ind = 0;
rcol_ind = 0;
vcol_ind = -1;
ov_ind = 0;
ovtype_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXRETRIEVE" (:collectionName:collectionName_ind,

:result_tab:rtab_ind,
:result_colname:rcol_ind,
:valid_colname:vcol_ind,
:overrideType:ovtype_ind,:override:ov_ind,
:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

128 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

In this example, the <xcollection> element in the DAD file must have an
<SQL_stmt> element. The override parameter overrides the value of <SQL_stmt>,
by changing the price to be greater than 50.00, and the date is changed to be
greater than 1998-12-01.

Example 2: A stored procedure using XML_OVERRIDE.
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char collectionName[32]; /* name of an XML collection */
char result_tab[32]; /* name of the result table */
char result_colname[32]; /* name of the result column */
char valid_colname[32]; /* name of the valid column, will set to NULL*/
char override[256]; /* override, SQL_stmt*/
short overrideType; /* defined in dxx.h */
short max_row; /* maximum number of rows */
short num_row; /* actual number of rows */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short collectionName_ind;
short rtab_ind;
short rcol_ind;
short vcol_ind;
short ovtype_ind;
short ov_ind;
short maxrow_ind;
short numrow_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initial host variable and indicators */
strcpy(collection, "sales_ord");
strcpy(result_tab,"xml_order_tab");
strcpy(result_col,"xmlorder");
valid_colname[0] = '\0';
sprintf(override,"%s %s",

"/Order/Part Price > 50.00 AND ",
"/Order/Part/Shipment/ShipDate > '1998-12-01'");

overrideType = XML_OVERRIDE;
max_row = 500;
num_row = 0;
returnCode = 0;
msg_txt[0] = '\0';
collectionName_ind = 0;
rtab_ind = 0;
rcol_ind = 0;
vcol_ind = -1;
ov_ind = 0;
ovtype_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXRETRIEVE" (:collectionName:collectionName_ind,

:result_tab:rtab_ind,
:result_colname:rcol_ind,
:valid_colname:vcol_ind,
:overrideType:ovtype_ind,:override:ov_ind,

Chapter 9. Managing XML collection data 129

:max_row:maxrow_ind,:num_row:numrow_ind,
:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

In this example, the <collection> element in the DAD file has an RDB_node for the
root element_node. The override value is XML-content based. The XML Extender
converts the simple location path to the mapped DB2 column.

Decomposing XML documents into DB2 data
To decompose an XML document is to break down the data inside of an XML
document and store it in relational tables. The XML Extender provides stored
procedures to decompose XML data from source XML documents into relational
tables. To use these stored procedures, you must create a DAD file, which specifies
the mapping between the XML document and DB2 table structure. The stored
procedures use the DAD file to decompose the XML document. See “Planning for
XML collections” on page 52 to learn how to create a DAD file.

Enabling an XML collection for decomposition
In most cases, you need to enable an XML collection before using the stored
procedures. In the following cases, you are required to enable an XML collection:

v When decomposing XML documents into new tables, an XML collection must be
enabled because all tables in the XML collection are created by the XML
Extender when the collection is enabled.

v When keeping the sequence of elements and attributes that have multiple
occurrence is important. The XML Extender only preserves the sequence order of
elements or attributes of multiple occurrence for tables that are created during
enablement of a collection. When decomposing XML documents into existing
relational tables, the sequence order is not guaranteed to be preserved.

If you want to pass the DAD file spontaneously when the tables already exist in
your database, you do not need to enable an XML collection.

Decomposition table size limits
Decomposition uses RDB_node mapping to specify how an XML document is
decomposed into DB2 tables by extracting the element and attribute values and
storing them in table rows. The values from each XML document are stored in one
or more DB2 tables. Each table can have a maximum of 1024 rows decomposed
from each document.

For example, if an XML document is decomposed into five tables, each of the five
tables can have up to 1024 rows for that particular document. If the table has rows
for multiple documents, it can have up to 1024 rows for each document. If the table
has 20 documents, it can have 20,480 rows, 1024 for each document.

Using multiple-occurring elements (elements with location paths that can occur
more than once in the XML structure) affects the number of rows . For example, a
document that contains an element <Part> that occurs 20 times, might be
decomposed as 20 rows in a table. When using multiple occurring elements,
consider that a maximum of 1024 rows can be decomposed into one table from a
single document.

130 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Before you begin
v Map the structure of the XML document to the relational tables that contain the

contents of the elements and attributes values.

v Prepare the DAD file, using RDB_node mapping. See “Planning for XML
collections” on page 52 for details.

v Optionally, enable the XML collection.

Decomposing the XML document
The XML Extender provides two stored procedures, dxxShredXML() and
dxxInsertXML, to decompose XML documents.

dxxShredXML()
This stored procedure is used for applications that do occasional updates or
for applications that do not want the overhead of administering the XML
data. The stored procedure dxxShredXML() does not required an enabled
collection; it uses a DAD file instead.

The stored procedure dxxShredXML() takes two input parameters, a DAD
file and the XML document that is to be decomposed; it returns two output
parameters: a return code and a return message.

The stored procedure dxxShredXML() inserts an XML document into an
XML collection according to the <Xcollection> specification in the input DAD
file. The tables that are used in the <Xcollection> of the DAD file are
assumed to exist, and the columns are assumed to meet the data types
specified in the DAD mapping. If this is not true, an error message is
returned. The stored procedure dxxShredXML() then decomposes the XML
document, and it inserts untagged XML data into the tables specified in the
DAD file.

The corresponding stored procedure for composition is dxxGenXML(); it
also takes the DAD as the input parameter and does not require that the
XML collection be enabled.

To decompose an XML collection: dxxShredXML()

Embed a stored procedure call in your application using the following stored
procedure declaration:
dxxShredXML(CLOB(100K) DAD, /* input */

CLOB(1M) xmlobj, /* input */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

See “dxxShredXML()” on page 207 for the full syntax and examples.

Example: The following is an example of a call to dxxShredXML():
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE is CLOB(100K) dad; /* DAD */
EXEC SQL DECLARE :dad VARIABLE CCSID 1047;

/* specifies the CCSID for DAD when running */
/* from USS to ensure that DB2 converts the */
/* code page correctly */

SQL TYPE is CLOB(100K) xmlDoc; /* input xml document */
EXEC SQL DECLARE :xmlDoc VARIABLE CCSID 1047;

/* specifies the CCSID for DAD when runnin
/* from USS to ensure that DB2 converts th

Chapter 9. Managing XML collection data 131

/* code page correctly */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short dad_ind;
short xmlDoc_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

FILE *file_handle;
long file_length=0;

/* initialize the DAD CLOB object. */
file_handle = fopen("/dxx/samples/dad/getstart_xcollection.dad", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &dad.data;, 1, FILE_SIZE, file_handle);
if (file_length == 0) {
printf ("Error reading dad file getstart_xcollection.dad\n");
rc = -1;
goto exit;

} else
dad.length = file_length;

}
else {
printf("Error opening dad file \n");
rc = -1;
goto exit;

}

/* Initialize the XML CLOB object. */
file_handle = fopen("/dxx/samples/xml/getstart_xcollection.xml", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &xmlDoc.data;, 1, FILE_SIZE,

file_handle);
if (file_length == 0) {
printf ("Error reading xml file getstart_xcollection.xml \n");
rc = -1;
goto exit;

} else
xmlDoc.length = file_length;

}
else {
printf("Error opening xml file \n");
rc = -1;
goto exit;

}

/* initialize host variable and indicators */
returnCode = 0;
msg_txt[0] = '\0';
dad_ind = 0;
xmlDoc_ind = 0;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXSHRED" (:dad:dad_ind;

:xmlDoc:xmlDoc_ind,
:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

132 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

}

exit:
return rc;

dxxInsertXML()
This stored procedure is used for applications that make regular updates.
Because the same tasks are repeated, improved performance is important.
Enabling an XML collection and using the collection name in the stored
procedure improves performance. The stored procedure dxxInsertXML()
works the same as dxxShredXML(), except that dxxInsertXML() takes an
enabled XML collection as its first input parameter.

The stored procedure dxxInsertXML() inserts an XML document into an
enabled XML collection, which is associated with a DAD file. The DAD file
contains specifications for the collection tables and the mapping. The
collection tables are checked or created according to the specifications in
the <Xcollection>. The stored procedure dxxInsertXML() then decomposes
the XML document according to the mapping, and it inserts untagged XML
data into the tables of the named XML collection.

The corresponding stored procedure for composition is dxxRetrieveXML(); it
also takes the name of an enabled XML collection.

To decompose an XML collection: dxxInsertXML()

Embed a stored procedure call in your application using the following stored
procedure declaration:
dxxInsertXML(char(collectionName32) collectionName, /* input */

CLOB(1M) xmlobj, /* input */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

See “dxxInsertXML()” on page 210 for the full syntax and examples.

Example: The following is an example of a call to dxxInsertXML():
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char collectionName[32]; /* name of an XML collection */
SQL TYPE is CLOB(100K) xmlDoc; /* input xml document */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short collectionName_ind;
short xmlDoc_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

FILE *file_handle;
long file_length=0;

/* initialize the DAD CLOB object. */
file_handle = fopen("/dxx/samples/dad/getstart_xcollection.dad", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &dad.data;, 1, FILE_SIZE, file_handle);
if (file_length == 0) {
printf ("Error reading dad file getstart_xcollection.dad\n");
rc = -1;
goto exit;

} else
dad.length = file_length;

Chapter 9. Managing XML collection data 133

}
else {
printf("Error opening dad file \n");
rc = -1;
goto exit;

}

/* initialize host variable and indicators */
strcpy(collectionName, "sales_ord");
returnCode = 0;
msg_txt[0] = '\0';
collectionName_ind = 0;
xmlDoc_ind = 0;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXINSERTXML" (:collection_name:collection_name_ind,

:xmlDoc:xmlDoc_ind,
:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

exit:
return rc;

Accessing an XML collection
You can update, delete, search, and retrieve XML collections. Remember, however,
that the purpose of using an XML collection is to store or retrieve untagged, pure
data in database tables. The data in existing database tables has nothing to do with
any incoming XML documents; update, delete, and search operations literally
consist of normal SQL access to these tables. If the data is decomposed from
incoming XML documents, no original XML documents continue to exist.

The XML Extender provides the ability to perform operations on the data from an
XML collection view. Using UPDATE and DELETE SQL statements, you can modify
the data that is used for composing XML documents, and therefore, update the
XML collection.

Considerations:

v To update a document, do not delete a row containing the primary key of the
table, which is the foreign key row of the other collection tables. When the
primary key and foreign key row is deleted, the document is deleted.

v To replace or delete elements and attribute values, you can delete and insert
rows in lower-level tables without deleting the document.

v To delete a document, delete the row which composes the top element_node
specified in the DAD.

Updating data in an XML collection
The XML Extender allows you to update untagged data that is stored in XML
collection tables. By updating XML collection table values, you are updating the text
of an XML element, or the value of an XML attribute. Additionally, updates can
delete an instance of data from multiple-occurring elements or attributes.

134 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

From an SQL point of view, changing the value of the element or attribute is an
update operation, and deleting an instance of an element or attribute is a delete
operation. From an XML point of view, as long as the element text or attribute value
of the root element_node exists, the XML document still exists and is, therefore, an
update operation.

Requirements: To update data in an XML collection, observe the following rules.

v Specify the primary-foreign key relationship among the collection tables when the
existing tables have this relationship. If they do not, ensure that there are
columns that can be joined.

v Include the join condition that is specified in the DAD file:

– For SQL mapping, in the <SQL_stmt> element

– For RDB_node mapping, in the RDB_node of the root element node

Updating element and attribute values
In an XML collection, element text and attribute value are all mapped to columns in
database tables. Regardless of whether the column data previously exists or is
decomposed from incoming XML documents, you replace the data using the normal
SQL update technique.

To update an element or attribute value, specify a WHERE clause in the SQL
UPDATE statement that contains the join condition that is specified in the DAD file.

For example:
UPDATE SHIP_TAB

set MODE = 'BOAT'
WHERE MODE='AIR' AND PART_KEY in
(SELECT PART_KEY from PART_TAB WHERE ORDER_KEY=68)

The <ShipMode> element value is updated from AIR to BOAT in the SHIP_TAB
table, where the key is 68.

Deleting element and attribute instances
To update composed XML documents by eliminating multiple-occurring elements or
attributes, delete a row containing the field value that corresponds to the element or
attribute value, using the WHERE clause. As long as you do not delete the row that
contains the values for the top element_node, deleting element values is considered
an update of the XML document.

For example, in the following DELETE statement, you are deleting a <shipment>
element by specifying a unique value of one of its subelements.
DELETE from SHIP_TAB

WHERE DATE='1999-04-12'

Specifying a DATE value deletes the row that matches this value. The composed
document originally contained two <shipment> elements, but now contains one.

Deleting an XML document from an XML collection
You can delete an XML document that is composed from a collection. This means
that if you have an XML collection that composes multiple XML documents, you can
delete one of these composed documents.

To delete the document, you delete a row in the table that composes the top
element_node that is specified in the DAD file. This table contains the primary key
for the top-level collection table and the foreign key for the lower-level tables.

Chapter 9. Managing XML collection data 135

For example, the following DELETE statement specifies the value of the primary
key column.
DELETE from order_tab

WHERE order_key=1

ORDER_KEY is the primary key in the table ORDER_TAB and is the top
element_node when the XML document is composed. Deleting this row deletes one
XML document that is generated during composition. Therefore, from the XML point
of view, one XML document is deleted from the XML collection.

Retrieving XML documents from an XML collection
Retrieving XML documents from an XML collection is similar to composing
documents from the collection.

To retrieve XML documents, use the stored procedure, dxxRetrieveXML(). See
“dxxRetrieveXML()” on page 203 for syntax and examples.

DAD file consideration: When you decompose XML documents in an XML
collection, you can lose the order of multiple-occurring elements and attribute
values, unless you specify the order in the DAD file. To preserve this order, you
should use the RDB_node mapping scheme. This mapping scheme allows you to
specify an orderBy attribute for the table containing the root element in its
RDB_node.

Searching an XML collection
This section describes searching an XML collection in terms of the following goals:

v Generating XML documents using search criteria:

This task is actually composition using a condition. You can specify the search
criteria using the following search criteria:

– Specify the condition in the text_node and attribute_node of the DAD file

– Specify the overwrite parameter when using the dxxGenXML() and
dxxRetrieveXML() stored procedures.

For example, if you enabled an XML collection, sales_ord, using the DAD file,
order.dad, but you now want to override the price using form data derived
from the Web, you can override the value of the <SQL_stmt> DAD element,
as follows:
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

...

EXEC SQL END DECLARE SECTION;

float price_value;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initialize host variable and indicators */
strcpy(collection,"sales_ord");
strcpy(result_tab,"xml_order_tab");
overrideType = SQL_OVERRIDE;
max_row = 20;
num_row = 0;
returnCode = 0;
msg_txt[0] = '\0';
override_ind = 0;

136 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

overrideType_ind = 0;
rtab_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

/* get the price_value from some place, such as form data */
price_value = 1000.00 /* for example*/

/* specify the overwrite */
sprintf(overwrite,

"SELECT o.order_key, customer, p.part_key, quantity, price,
tax, ship_id, date, mode

FROM order_tab o, part_tab p,
table

(select db2xml.generate_unique()
as ship_id, date, mode from ship_tab) s

WHERE p.price > %d and s.date >'1996-06-01' AND
p.order_key = o.order_key and s.part_key = p.part_key",
price_value);

/* Call the store procedure */
EXEC SQL CALL DB2XML.dxxRetrieve(:collection:collection_ind,

:result_tab:rtab_ind,
:overrideType:overrideType_ind,:overwrite:overwrite_ind,
:max_row:maxrow_ind,:num_row:numrow_ind,
:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

The condition of price > 2500.00 in order.dad is overridden by price > ?,
where ? is based on the input variable price_value.

v Searching for decomposed XML data:

You can use normal SQL query operations to search collection tables. You can
join collection tables, or use subqueries, and then do structural-text search on
text columns. With the results of the structural search, you can apply that data to
retrieve or generate the specified XML document.

Chapter 9. Managing XML collection data 137

138 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Part 4. Reference

This part provides syntax information for the XML Extender UDTs, UDFs, and stored
procedures. Message text is also provided for problem determination activities.

© Copyright IBM Corp. 2000, 2001 139

140 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 10. XML Extender administration command: DXXADM

You perform the following XML Extender administration tasks by calling DXXADM.
using various subcommands:

v Enabling or disabling the database server for the XML Extender

v Enabling or disabling an XML column

v Enabling or disabling an XML collection

You can also use the XML Extender administration wizard or stored procedures to
perform each of the administration tasks.

© Copyright IBM Corp. 2000, 2001 141

High-level syntax

Purpose
To perform XML Extender administration tasks you call DXXADM with the
subcommand and parameters for each task.

The following syntax diagram provides the high-level syntax for calling DXXADM.
Descriptions of each subcommand and their parameters are provided in the
following sections.

Format

�� CALL dxxadm ’ -a subsystem name enable_server parameters
disable_server
enable_column parameters
disable_column parameters
enable_collection parameters
disable_collection parameters

�

� ’ ASIS �

Parameters
Table 19. dxxadm parameters

Parameter Description

subsystem name The name of the DB2 subsystem to which the
application attaches.

The call assumes you have the XML Extender load module library activated. If you
do not, use the fully qualified for DXXADM.

Administration subcommands
The following sections describe each of the DXXADM subcommands that are
available to system programmers:

v “enable_server” on page 143

v “disable_server” on page 145

v “enable_column” on page 146

v “disable_column” on page 147

v “enable_collection” on page 148

v “disable_collection” on page 149

142 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

enable_server

Purpose
Connects to and enables a database server so that it can be used with the XML
Extender. When the database server is enabled, the XML Extender creates the
following objects:

v The XML Extender user-defined types (UDTs).

v The XML Extender user-defined functions (UDFs).

v The XML Extender stored procedures

v The XML Extender DTD reference table, DTD_REF, which stores DTDs and
information about each DTD. For a complete description of the DTD_REF table,
see “DTD reference table” on page 213.

v The XML Extender usage table, XML_USAGE, which stores common information
for each column that is enabled for XML and for each collection. For a complete
description of the XML_USAGE table, see “XML usage table” on page 213.

Format

�� dxxadm enable_server -a subsystem_name
security security_level

�

� using tablespace_DTD_REF,tablespace_XML_USAGE �

� WLM environment WLM_name1
WLM_name2

�

Parameters
Table 20. enable_server parameters

Parameter Description

-a subsystem_name The name of the DB2 subsystem.

security_level Determines the user ID that is authorized to
access external resources when running
stored procedures. Choices are DB2, USER,
DEFINER. DB2 is the default. See DB2
Universal Database for OS/390 and z/OS
SQL Reference, Version 7 for more
information.

tablespace_DTD_REF The name of the table space in which the
CLOB column, CONTENT, of the DTD_REF
table, is stored. This table space is either
created by the DB2 administrator manually or
when the DXXGPREP job file is run during
initialization. The default is XMLLOBTS.

tablespace_XML_USAGE The name of table space in which the CLOB
column, DAD, of the XML_USAGE table, is
stored. This table space is either created by
the DB2 administrator manually or when the
DXXGPREP job file is run during initialization.
The default is XMLLOBT2.

Chapter 10. XML Extender administration command: DXXADM 143

Table 20. enable_server parameters (continued)

Parameter Description

WLM name The names of the WLM environments. At
least one name is required. If one is
specified, the name is for all stored
procedures and UDFs. If two are specified,
the first name is for the stored procedures,
the second name is for the UDFs.

Examples
The following example enables the database server for XML Extender using the
SUBSY1 subsystem, the table spaces TBSPC1 and TBSPC2, and the WML
environment ENVIR233:
dxxadm 'enable_server -a SUBSYS1 using tbspc1,tbspc2 wlm environment envir233' ASIS

144 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

disable_server

Purpose
Connects to and disables the XML-enabled database server. When the database
server is disabled, it can no longer be used by the XML Extender. When the XML
Extender disables the database server, it drops the following objects:

v The XML Extender user-defined types (UDTs).

v The XML Extender user-defined functions (UDFs).

v The XML Extender DTD reference table, DTD_REF, which stores DTDs and
information about each DTD. For a complete description of the DTD_REF table,
see “DTD reference table” on page 213.

v The XML Extender usage table, XML_USAGE, which stores common information
for each column that is enabled for XML and for each collection. For a complete
description of the XML_USAGE table, see “XML usage table” on page 213.

Important: You must disable all XML columns before attempting to disable a
database server. The XML Extender cannot disable a database server that contains
columns or collections that are enabled for XML.

Format

�� disable_server -a subsystem_name �

Parameters
Table 21. disable_server parameters

Parameter Description

-a subsystem_name The name of the DB2 subsystem.

Examples
The following example disables the database server:
dxxadm disable_server -a SUBSYS1

Chapter 10. XML Extender administration command: DXXADM 145

enable_column

Purpose
Connects to a database server and enables an XML column so that it can contain
the XML Extender UDTs. When enabling a column, the XML Extender completes
the following tasks:

v Determines whether the XML table has a primary key; if not, the XML Extender
alters the XML table and adds a column called DXXROOT_ID.

v Creates side tables that are specified in the DAD file with a column containing a
unique identifier for each row in the XML table. This column is either the root ID
that the user specified or the DXXROOT_ID that was named by the XML
Extender.

v Creates a default view for the XML table and its side tables, optionally using a
name you specify.

Format

�� dxxadm enable_column - a subsystem_name �

� tab_name column_name DAD_file
-t tablespace -v default_view

�

�
-r root_id

�

Parameters
Table 22. enable_column parameters

Parameter Description

- a subsystem_name The name of the DB2 subsystem.

tab_name The name of the table in which the XML
column resides.

column_name The name of the XML column.

DAD_file The name of the DAD file that maps the XML
document to the XML column and side tables.

-t tablespace The table space, which is optional and
contains the side tables associated with the
XML column. If not specified, the default table
space is used.

-v default_view The name of the default view, which is
optional, that joins the XML column and side
tables.

-r root_id The name of the primary key in the XML
column table that is to be used as the root_id
for side tables. The root_id is optional.

Examples
The following example enables an XML column.
dxxadm enable_column -a SUBSYS1 SALES_TAB ORDER -v SALODVW -r INVOICE_NUMBER

146 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

disable_column

Purpose
Connects to a database and disables the XML-enabled column. When the column
is disabled, it can no longer contain XML data types. When an XML-enabled column
is disabled, the following actions are performed:

v The XML column usage entry is deleted from the XML_USAGE table.

v The USAGE_COUNT is decremented in the DTD_REF table.

v All triggers that are associated with this column are dropped.

v All side tables that are associated with this column are dropped.

Important: You must disable an XML column before dropping an XML table. If an
XML table is dropped but its XML column is not disabled, the XML Extender keeps
both the side tables it created and the XML column entry in the XML_USAGE table.

Format

�� dxxadm disable_column -a subsystem_name tab_name column_name �

Parameters
Table 23. disable_column parameters

Parameter Description

-a subsystem_name The name of the DB2 subsystem.

tab_name The name of the table in which the XML
column resides.

column_name The name of the XML column.

Examples
The following example disables an XML-enabled column.
dxxadm disable_column -a SUBSYS1 SALES_TAB ORDER

Chapter 10. XML Extender administration command: DXXADM 147

enable_collection

Purpose
Connects to a database server and enables an XML collection according to the
specified DAD. When enabling a collection, the XML Extender does the following
tasks:

v Creates an XML collection usage entry in the XML_USAGE table.

v For RDB_node mapping, creates collection tables specified in the DAD if the
tables do not exist in the database.

Format

�� enable_collection -a subsystem_name collection_name DAD_file �

�
-t tablespace

�

Parameters
Table 24. enable_collection parameters

Parameter Description

-a subsystem_name The name of the DB2 subsystem.

-t tablespace The name of the table space, which is
optional and associated with the collection. If
not specified, the default table space is used.

collection_name The name of the XML collection.

DAD_file The name of the DAD file that maps the XML
document to the relational tables in the
collection.

Examples
The following example enables an XML collection named SALES_ORD with the
GETSTART_XCOLLECTION.DAD:
dxxadm enable_collection -a SUBSYS1 using ORDRPSC SALES_ORD

'ORDPRJ.WORK.DAD(GETSTART_XCOLLECTION)'

148 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

disable_collection

Purpose
Connects to a database and disables an XML-enabled collection. The collection
name can no longer be used in the composition (dxxRetrieveXML) and
decomposition (dxxInsertXML) stored procedures. When an XML collection is
disabled, the associated collection entry is deleted from the XML_USAGE table.
Note that disabling the collection does not drop the collection tables that are
created during the enable_collection step.

Format

�� dxxadm disable_collection -a subsystem_name collection_name �

Parameters
Table 25. disable_collection parameters

Parameter Description

-a subsystem_name The name of the DB2 subsystem.

collection_name The name of the XML collection.

Examples
The following example disables an XML collection named SALES_ORD.
dxxadm disable_collection -a SUBSYS1 SALES_ORD

Chapter 10. XML Extender administration command: DXXADM 149

150 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 11. XML Extender user-defined types

The XML Extender user-defined types (UDTs) are data types that are used for XML
columns and XML collections. All the UDTs have the schema name DB2XML. The
XML Extender creates UDTs for storing and retrieving XML documents. Table 26
contains an overview of the UDTs.

Table 26. The XML Extender UDTs

User-defined type column Source data type Usage description

XMLVARCHAR VARCHAR(varchar_len) Stores an entire XML
document as VARCHAR
inside DB2.

XMLCLOB CLOB(clob_len) Stores an entire XML
document as character large
object (CLOB) inside DB2.

XMLFILE VARCHAR(512) Specifies the file name of the
local file server. If XMLFILE is
specified for the XML column,
then the XML Extender stores
the XML document in an
external server file. The Text
Extender cannot be enabled
with XMLFILE. It is your
responsibility to ensure
integrity between the file
content and DB2, as well as
the side table created for
indexing.

Where varchar_len and clob_len are specific to the operating system.

For DB2 UDB, varchar_len = 3K and clob_len = 2G.

These UDTs are used only to specify the types of application columns; they do not
apply to the side tables that the XML Extender creates.

© Copyright IBM Corp. 2000, 2001 151

152 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 12. XML Extender user-defined functions

The XML Extender provides functions for storing, retrieving, searching, and updating
XML documents, and for extracting XML elements or attributes. Use XML
user-defined functions (UDFs) for XML columns, but not for XML collections. All the
UDFs have the schema name DB2XML, which can be omitted in front of UDFs.

The four types of XML Extender functions are: storage functions, retrieval functions,
extracting functions, and an update function.

storage functions
Storage functions insert XML documents into a DB2 database. For syntax
and examples, see “Storage functions” on page 154.

retrieval functions
Retrieval functions retrieve XML documents from XML columns in a DB2
database. For syntax and examples, see “Retrieval functions” on page 158.

extracting functions
Extracting functions extract and convert the element content or attribute
value from an XML document to the data type that is specified by the
function name. The XML Extender provides a set of extracting functions for
various SQL data types. For syntax and examples, see “Extracting
functions” on page 163.

update function
The Update() function modifies the element content or attribute value and
returns a copy of an XML document with an updated value that is specified
by the location path. The Update() function allows the application
programmer to specify the element or attribute that is to be updated. For
syntax and examples, see “Update function” on page 183.

generate_unique function
The generate_unique() function returns a unique key. For syntax and
examples, see “Generate unique function” on page 188.

Table 27 provides a summary of the XML Extender functions.

Table 27. The XML Extender user-defined functions

Type Function

Storage functions “XMLVarcharFromFile()” on page 155

“XMLCLOBFromFile()” on page 156

“XMLFileFromVarchar()” on page 157

“XMLFileFromCLOB()” on page 158

Retrieval functions “Content(): retrieve from XMLFILE to a
CLOB” on page 160

“Content(): retrieve from XMLVARCHAR to an
external server file” on page 161

“Content(): retrieval from XMLCLOB to an
external server file” on page 162

© Copyright IBM Corp. 2000, 2001 153

Table 27. The XML Extender user-defined functions (continued)

Type Function

Extracting functions “extractInteger() and extractIntegers()” on
page 164

“extractSmallint() and extractSmallints()” on
page 165

“extractDouble() and extractDoubles()” on
page 167

“extractReal() and extractReals()” on
page 169

“extractChar()and extractChars()” on
page 171

“extractVarchar() and extractVarchars()” on
page 173

“extractCLOB() and extractCLOBs()” on
page 175

“extractDate() and extractDates()” on
page 177

“extractTime() and extractTimes()” on
page 179

“extractTimestamp() and extractTimestamps()”
on page 181

Update function “Update function” on page 183

Generate unique function “Generate unique function” on page 188

When using parameter markers in UDFs, a Java database (JDBC) restriction
requires that the parameter marker for the UDF must be casted to the data type of
the column into which the returned data will be inserted. See “Limitations when
invoking functions from Java database (JDBC)” on page 119 to learn how to cast
the parameter markers.

Storage functions
Use storage functions to insert XML documents into a DB2 database. You can use
the default casting functions of a UDT directly in INSERT or SELECT statements as
described in “Storing data” on page 108. Additionally, the XML Extender provides
UDFs to take XML documents from sources other than the UDT base data type and
convert them to the specified UDT.

The XML Extender provides the following storage functions:

v “XMLVarcharFromFile()” on page 155

v “XMLCLOBFromFile()” on page 156

v “XMLFileFromVarchar()” on page 157

v “XMLFileFromCLOB()” on page 158

154 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

XMLVarcharFromFile()

Purpose
Reads an XML document from a server file and returns the document as an
XMLVARCHAR type.

Syntax

�� XMLVarcharFromFile (fileName) �

Parameters
Table 28. XMLVarcharFromFile parameter

Parameter Data type Description

fileName VARCHAR(512) The fully qualified server file
name.

Return type
XMLVARCHAR
The following example reads an XML document from a server file and inserts it into
an XML column as an XMLVARCHAR type.
EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

VALUES('1234', 'Sriram Srinivasan',
XMLVarcharFromFile('dxx_install/samples/cmd/getstart.xml'))

In this example, a record is inserted into the SALES_TAB table. The function
XMLVarcharFromFile() imports the XML document from a file into DB2 and stores it
as a XMLVARCHAR.

Chapter 12. XML Extender user-defined functions 155

XMLCLOBFromFile()

Purpose
Reads an XML document from a server file and returns the document as an
XMLCLOB type.

Syntax

�� XMLCLOBFromFile (fileName) �

Parameters
Table 29. XMLCLOBFromFile parameter

Parameter Data type Description

fileName VARCHAR(512) The fully qualified server file
name.

Return type
XMLCLOB as LOCATOR
The following example reads an XML document from a server file and inserts it into
an XML column as an XMLCLOB type.
EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

VALUES('1234', 'Sriram Srinivasan',
XMLCLOBFromFile('dxx_install/samples/cmd/getstart.xml'))

The column ORDER in the SALES_TAB table is defined as an XMLCLOB type. The
preceding example shows how the column ORDER is inserted into the SALES_TAB
table.

156 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

XMLFileFromVarchar()

Purpose
Reads an XML document from memory as VARCHAR, writes it to an external
server file, and returns the file name and path as an XMLFILE type.

Syntax

�� XMLFileFromVarchar (buffer , fileName) �

Parameters
Table 30. XMLFileFromVarchar parameters

Parameter Data type Description

buffer VARCHAR(3K) The memory buffer.

fileName VARCHAR(512) The fully qualified server file
name.

Return type
XMLFILE
The following examples reads an XML document from memory as VARCHAR,
writes it to an external server file, and inserts the file name and path as an
XMLFILE type in an XML column.
EXEC SQL BEGIN DECLARE SECTION;

struct { short len; char data[3000]; } xml_buff;
EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)
VALUES('1234', 'Sriram Srinivasan',

XMLFileFromVarchar(:xml_buf, 'dxx_install/samples/cmd/getstart.xml'))

The column ORDER in the SALES_TAB table is defined as an XMLFILE type. The
preceding example shows that if you have an XML document in your buffer, you
can store it in a server file.

Chapter 12. XML Extender user-defined functions 157

XMLFileFromCLOB()

Purpose
Reads an XML document as CLOB locator, writes it to an external server file, and
returns the file name and path as an XMLFILE type.

Syntax

�� XMLFileFromCLOB (buffer , fileName) �

Parameters
Table 31. XMLFileFromCLOB() parameters

Parameters Data type Description

buffer CLOB as LOCATOR The buffer containing the
XML document.

fileName VARCHAR(512) The fully qualified server file
name.

Return type
XMLFILE
The following example reads an XML document as CLOB locator (a host variable
with a value that represents a single LOB value in the database server), writes it to
an external server file, and inserts the file name and path as an XMLFILE type in
an XML column.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB_LOCATOR xml_buff;
EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)
VALUES('1234', 'Sriram Srinivasan',

XMLFileFromCLOB(:xml_buf, 'dxx_install/samples/cmd/getstart.xml'))

The column ORDER in the SALES_TAB table is defined as an XMLFILE type. If
you have an XML document in your buffer, you can store it in a server file.

Retrieval functions
The XML Extender provides an overloaded function Content(), which is used for
retrieval. This overloaded function refers to a set of retrieval functions that have the
same name, but behave differently based on where the data is being retrieved. You
can also use the default casting functions to convert an XML UDT to the base data
type as described in “Retrieving an entire document” on page 110.

The Content() functions provide the following types of retrieval:

v Retrieval from external storage at the server to a host variable at the client.

You can use Content() to retrieve an XML document to a memory buffer when it
is stored as an external server file. You can use “Content(): retrieve from
XMLFILE to a CLOB” on page 160 for this purpose.

v Retrieval from internal storage to an external server file

You can also use Content() to retrieve an XML document that is stored inside
DB2 and store it to a server file on the DB2 server’s file system. The following
Content() functions are used to store information on external server files:

158 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|
|
|
|
|

– “Content(): retrieve from XMLVARCHAR to an external server file” on
page 161

– “Content(): retrieval from XMLCLOB to an external server file” on page 162

The examples in the following section assume you are using the DB2 command
shell, in which you do not need to type “DB2” at the beginning of each command.

Chapter 12. XML Extender user-defined functions 159

Content(): retrieve from XMLFILE to a CLOB

Purpose
Retrieves data from a server file and stores it in a CLOB LOCATOR.

Syntax

�� Content (xmlobj) �

Parameters
Table 32. XMLFILE to a CLOB parameter

Parameter Data type Description

xmlobj XMLFILE The XML document.

Return type
CLOB (clob_len) as LOCATOR

clob_len for DB2 UDB is 2G.
The following example retrieves data from a server file and stores it in a CLOB
locator.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB_LOCATOR xml_buff;
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO SALES_DB

EXEC SQL DECLARE cl CURSOR FOR

SELECT Content(order) from sales_tab
WHERE sales_person = 'Sriram Srinivasan'

EXEC SQL OPEN c1;

do {
EXEC SQL FETCH c1 INTO :xml_buff;
if (SQLCODE != 0) {

break;
}

else {
/* do with the XML doc in buffer */
}

}

EXEC SQL CLOSE c1;

EXEC SQL CONNECT RESET;

The column ORDER in the SALES_TAB table is of an XMLFILE type, so the
Content() UDF retrieves data from a server file and stores it in a CLOB locator.

160 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Content(): retrieve from XMLVARCHAR to an external server file

Purpose
Retrieves the XML content that is stored as an XMLVARCHAR type and stores it in
an external server file.

Syntax

�� Content (xmlobj , filename) �

Important: If a file with the specified name already exists, the content function
overrides its content.

Parameters
Table 33. XMLVarchar to external server file parameters

Parameter Data type Description

xmlobj XMLVARCHAR The XML document.

filename VARCHAR(512) The fully qualified server file
name.

Return type
VARCHAR(512)
The following example retrieves the XML content that is stored as XMLVARCHAR
type and stores it in an external server file.
CREATE table app1 (id int NOT NULL, order DB2XML.XMLVarchar);
INSERT into app1 values (1, '<?xml version="1.0"?>

<!DOCTYPE SYSTEM dxx_install/samples/dtd/getstart.dtd"->
<Order key="1">

<Customer>
<Name>American Motors</Name>
<Email>parts@am.com</Email>

</Customer>
<Part color="black">
<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>
<Shipment>

<ShipDate>1998-08-19</ShipDate>
<ShipMode>AIR </ShipMode>

</Shipment>
<Shipment>

<ShipDate>1998-08-19</ShipDate>
<ShipMode>BOAT </ShipMode>

</Shipment>
</Part>

</Order>');

SELECT DB2XML.Content(order, 'dxx_install/samples/dad/getstart_column.dad')
from app1 where ID=1;

Chapter 12. XML Extender user-defined functions 161

Content(): retrieval from XMLCLOB to an external server file

Purpose
Retrieves the XML content that is stored as an XMLCLOB type and stores it in an
external server file.

Syntax

�� Content (xmlobj , filename) �

Important: If a file with the specified name already exists, the content function
overrides its content.

Parameters
Table 34. XMLCLOB to external server file parameters

Parameter Data type Description

xmlobj XMLCLOB as LOCATOR The XML document.

filename VARCHAR(512) The fully qualified server file
name.

Return type
VARCHAR(512)
The following example retrieves the XML content that is stored as an XMLCLOB
type and stores it in an external server file.
CREATE table app1 (id int NOT NULL, order DB2XML.XMLCLOB not logged);

INSERT into app1 values (1, '<?xml version="1.0"?>
<!DOCTYPE SYSTEM dxx_install/samples/dtd/getstart.dtd"->
<Order key="1">
<Customer>

<Name>American Motors</Name>
<Email>parts@am.com</Email>

</Customer>
<Part color="black">

<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>
<Shipment>

<ShipDate>1998-08-19</ShipDate>
<ShipMode>AIR </ShipMode>

</Shipment>
<Shipment>

<ShipDate>1998-08-19</ShipDate>
<ShipMode>BOAT </ShipMode>

</Shipment>
</Part>

</Order>');

SELECT DB2XML.Content(order, 'dxx_install/samples/cmd/getstart.xml')
from app1 where ID=1;

162 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Extracting functions
The extracting functions extract the element content or attribute value from an XML
document and return the requested SQL data types. The XML Extender provides a
set of extracting functions for various SQL data types. The extracting functions take
two input parameters. The first parameter is the XML Extender UDT, which can be
one of the XML UDTs. The second parameter is the location path that specifies the
XML element or attribute. Each extracting function returns the value or content that
is specified by the location path.

Because some element or attribute values have multiple occurrence, the extracting
functions return either a scalar or a table value; the former is called a scalar
function, the latter is called a table function.

The XML Extender provides the following extracting functions:

v “extractInteger() and extractIntegers()” on page 164

v “extractSmallint() and extractSmallints()” on page 165

v “extractDouble() and extractDoubles()” on page 167

v “extractReal() and extractReals()” on page 169

v “extractChar()and extractChars()” on page 171

v “extractVarchar() and extractVarchars()” on page 173

v “extractCLOB() and extractCLOBs()” on page 175

v “extractDate() and extractDates()” on page 177

v “extractTime() and extractTimes()” on page 179

v “extractTimestamp() and extractTimestamps()” on page 181

The examples in the following section assume you are using the DB2 command
shell, in which you do not need to type “DB2” at the beginning of each command.

Chapter 12. XML Extender user-defined functions 163

extractInteger() and extractIntegers()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as INTEGER type.

Syntax

Scalar function:

�� extractInteger (xmlobj , path) �

Table function:

�� extractIntegers (xmlobj , path) �

Parameters
Table 35. extractInteger and extractIntegers function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
INTEGER

Returned column name (table function)
returnedInteger
Scalar function example:

In the following example, one value is returned when the attribute value of key =
″1″. The value is extracted as an INTEGER.
CREATE TABLE t1(key INT);
INSERT INTO t1 values (

DB2XML.extractInteger(DB2XML.XMLFile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part[@color="black "]/key'));

SELECT * from t1;

Table function example:

In the following example, each order key for the sales orders extracted as
INTEGER.
SELECT *
FROM TABLE(

DB2XML.extractIntegers(DB2XML.XMLFile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part/key')) AS X;

164 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

extractSmallint() and extractSmallints()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as SMALLINT type.

Syntax

Scalar function:

�� extractSmallint (xmlobj , path) �

Table function:

�� extractSmallints (xmlobj , path) �

Parameters
Table 36. extractSmallint and extractSmallintsfunction parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
SMALLINT

Returned column name (table function)
returnedSmallint
Scalar function example:

In the following example, the value of key in all sales orders is extracted as
SMALLINT
CREATE TABLE t1(key INT);
INSERT INTO t1 values (

DB2XML.extractSmallint(b2xml.xmlfile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part[@color="black "]/key'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 165

Table function example:

In the following example, the value of key in all sales orders is extracted as
SMALLINT
SELECT *
FROM TABLE(

DB2XML.extractSmallints(DB2XML.XMLFile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part/key')) AS X;

166 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

extractDouble() and extractDoubles()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as DOUBLE type.

Syntax

Scalar function:

�� extractDouble (xmlobj , path) �

Table function:

�� extractDoubles (xmlobj , path) �

Parameters
Table 37. extractDouble and extractDoublesfunction parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
DOUBLE

Returned column name (table function)
returnedDouble
Scalar function example:

The following example automatically converts the price in an order from a DOUBLE
type to a DECIMAL.
CREATE TABLE t1(price DECIMAL(9,2));
INSERT INTO t1 values (

DB2XML.extractDouble(DB2XML.xmlfile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part[@color="black "]/ExtendedPrice'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 167

Table function example:

In the following example, the value of ExtendedPrice in each part of the sales order
is extracted as DOUBLE.
SELECT CAST(RETURNEDDOUBLE AS DOUBLE)
FROM TABLE(

DB2XML.extractDoubles(DB2XML.XMLFile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part/ExtendedPrice')) AS X;

168 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

extractReal() and extractReals()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as REAL type.

Syntax

Scalar function:

�� extractReal (xmlobj , path) �

Table function:

�� extractReals (xmlobj , path) �

Parameters
Table 38. extractReal and extractRealsfunction parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
REAL

Returned column name (table function)
returnedReal
Scalar function example:

In the following example, the value of ExtendedPrice is extracted as a REAL.
CREATE TABLE t1(price DECIMAL(9,2));
INSERT INTO t1 values (

DB2XML.extractReal(DB2XML.xmlfile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part[@color="black"]/ExtendedPrice'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 169

extractChar()and extractChars()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as CHAR type.

Syntax

Scalar function:

�� extractChar (xmlobj , path) �

Table function:

�� extractChars (xmlobj , path) �

Parameters
Table 39. extractChar and extractCharsfunction parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
CHAR

Returned column name (table function)
returnedChar
Scalar function example:

In the following example, the value of Name is extracted as CHAR.
CREATE TABLE t1(name char(30));
INSERT INTO t1 values (

DB2XML.extractChar(DB2XML.xmlfile('dxx_install/samples/xml/getstart.xml'),
'/Order/Customer/Name'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 171

Table function example:

In the following example, the value of Color is extracted as CHAR.
SELECT *
FROM TABLE(

DB2XML.extractChars(DB2XML.XMLFile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part/@color')) AS X;

172 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

extractVarchar() and extractVarchars()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as VARCHAR type.

Syntax

Scalar function:

�� extractVarchar (xmlobj , path) �

Table function:

�� extractVarchars (xmlobj , path) �

Parameters
Table 40. extractVarcharand extractVarchars function parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
VARCHAR(4K)

Returned column name (table function)
returnedVarchar
Scalar function example:

In the following example, the value of Name is extracted as VARCHAR.
CREATE TABLE t1(name varchar(30));
INSERT INTO t1 values (

DB2XML.extractVarchar(DB2XML.xmlfile('dxx_install/samples/xml/getstart.xml'),
'/Order/Customer/Name'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 173

Table function example:

In the following example, the value of Color is extracted as VARCHAR.
SELECT*
FROM TABLE(

DB2XML.extractVarchars(DB2XML.XMLFile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part/@color')) AS X;

174 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

extractCLOB() and extractCLOBs()

Purpose
Extracts a fragment of XML documents, with element and attribute markup, content
of elements and attributes, including sub-elements. This function differs from the
other extract functions; they return only the content of elements and attributes. The
extractClob(s) functions should be used to extract document fragments, whereas
extractVarchar(s) and extractChar(s) should be used to extract simple values.

Syntax

Scalar function:

�� extractCLOB (xmlobj , path) �

Table function:

�� extractCLOBs (xmlobj , path) �

Parameters
Table 41. extractCLOB and extractCLOBsfunction parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
CLOB(10K)

Returned column name (table function)
returnedCLOB
Scalar function example:

In this example, all name element content and tags are extracted from a purchase
order.
CREATE TABLE t1(name DB2XML.xmlclob);
INSERT INTO t1 values (

DB2XML.extractClob(DB2XML.xmlfile('dxx_install/samples/xml/getstart.xml'),
'/Order/Customer/Name'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 175

|
|

|
|
|
|
|

|

Table function example:

In this example, all of the color attributes are extracted from a purchase order.
SELECT *
FROM TABLE(

DB2XML.extractCLOBs(DB2XML.XMLFile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part/@color')) AS X;

176 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

extractDate() and extractDates()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as DATE type.

Syntax

Scalar function:

�� extractDate (xmlobj , path) �

Table function:

�� extractDates (xmlobj , path) �

Parameters
Table 42. extractDate and extractDatesfunction parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
DATE

Returned column name (table function)
returnedDate
Scalar function example:

In the following example, the value of ShipDate is extracted as DATE.
CREATE TABLE t1(shipdate DATE);
INSERT INTO t1 values (

DB2XML.extractDate(DB2XML.xmlfile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part[@color="red "]/Shipment/ShipDate'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 177

Table function example:

In the following example, the value of ShipDate is extracted as DATE.
SELECT *
FROM TABLE(

DB2XML.extractDates(DB2XML.XMLFile('dxx_install/samples/xml/getstart.xml'),
'/Order/Part[@color="black "]/Shipment/ShipDate')) AS X;

178 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

extractTime() and extractTimes()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as TIME type.

Syntax

Scalar function:

�� extractTime (xmlobj , path) �

Table function:

�� extractTimes (xmlobj , path) �

Parameters
Table 43. extractTime and extractTimesfunction parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
TIME

Returned column name (table function)
returnedTime
Scalar function example:
CREATE TABLE t1(testtime TIME);
INSERT INTO t1 values (

DB2XML.extractTime(DB2XML.XMLCLOB(
'<stuff><data>11.12.13</data></stuff>'), '//data'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 179

Table function example:
select *
from table(

DB2XML.extractTimes(DB2XML.XMLCLOB(
'<stuff><data>01.02.03</data><data>11.12.13</data></stuff>'),
'//data')) as x;

180 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

extractTimestamp() and extractTimestamps()

Purpose
Extracts the element content or attribute value from an XML document and returns
the data as TIMESTAMP type.

Syntax

Scalar function:

�� extractTimestamp (xmlobj , path) �

Table function:

�� extractTimestamps (xmlobj , path) �

Parameters
Table 44. extractTimestamp and extractTimestampsfunction parameters

Parameter Data type Description

xmlobj XMLVARCHAR,
XMLFILE, or
XMLCLOB

The column name.

path VARCHAR The location path of the
element or attribute.

Return type
TIMESTAMP

Returned column name (table function)
returnedTimestamp
Scalar function example:
CREATE TABLE t1(testtimestamp TIMESTAMP);
INSERT INTO t1 values (

DB2XML.extractTimestamp(DB2XML.XMLCLOB(
'<stuff><data>1998-11-11-11.12.13.888888</data></stuff>'),
'//data'));

SELECT * from t1;

Chapter 12. XML Extender user-defined functions 181

Table function example:
select * from
table(DB2XML.extractTimestamps(DB2XML.XMLClob(

'<stuff><data>1998-11-11-11.12.13.888888
</data><data>1998-12-22-11.12.13.888888</data></stuff>'),
'//data')) as x;

182 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Update function
The Update() function updates a specified element or attribute value in one or more
XML documents stored in the XML column. You can also use the default casting
functions to convert an SQL base type to the XML UDT, as described in “Updating
XML data” on page 113.

Purpose
Takes the column name of an XML UDT, a location path, and a string of the update
value and returns an XML UDT that is the same as the first input parameter. With
the Update() function, you can specify the element or attribute that is to be updated.

Syntax

�� Update (xmlobj , path , value) �

Parameters
Table 45. The UDF Update parameters

Parameter Data type Description

xmlobj XMLVARCHAR, XMLCLOB
as LOCATOR

The column name.

path VARCHAR The location path of the
element or attribute.

value VARCHAR The update string.

Restriction: The Update
function does not have an
option to disable output
escaping; the output of an
extractClob (which is a
tagged fragment) cannot be
inserted using this function.
Use textual values, only.

Important: Note that the Update UDF supports location paths that have predicates
with attributes, but not elements. For example, the following predicate is supported:
'/Order/Part[@color="black "]/ExtendedPrice'

The following predicate is not supported:
'/Order/Part/Shipment/[Shipdate < "11/25/00"]'

Return type

Data type Return type

XMLVARCHAR XMLVARCHAR

XMLCLOB as LOCATOR XMLCLOB

Chapter 12. XML Extender user-defined functions 183

Example
The following example updates the purchase order handled by the salesperson
Sriram Srinivasan.
UPDATE sales_tab

set order = db2xml.update(order, '/Order/Customer/Name', 'IBM')
WHERE sales_person = 'Sriram Srinivasan'

In this example, the content of /Order/Customer/Name is updated to IBM.

Usage
When you use the Update function to change a value in one or more XML
documents, it replaces the XML documents within the XML column. Based on
output from the XML parser, some parts of the original document are preserved,
while others are lost or changed. The following sections describe how the document
is processed and provide examples of how the documents look before and after
updates.

How the Update function processes the XML document
When the Update function replaces XML documents, it must reconstruct the
document based on the XML parser output. Table 46 describes how the parts of the
document are handled, with examples. For examples that compare XML documents
before and after an update, see “Examples” on page 186.

Table 46. Update function rules

Item or Node
type

XML document code example Status after update

XML
Declaration

<?xml version='1.0'
encoding='utf-8'
standalone='yes' >

The XML declaration is
preserved:

v Version information is
preserved.

v Encoding declaration is
preserved and appears when
specified in the original
document.

v Standalone declaration is
preserved and appears when
specified in the original
document.

v After update, single quotes
are used to delineate values.

184 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Table 46. Update function rules (continued)

Item or Node
type

XML document code example Status after update

DOCTYPE

Declaration

The document type declaration
is preserved:

v Root element name is
supported.

v Public and system
ExternalIDs are preserved
and appear when specified
in the original document.

v Internal DTD subset is NOT
preserved. Entities are
replaced; defaults for
attributes are processed and
appear in the output
documents.

v After update, double quotes
are used to delineate public
and system URI values.

v The current XML4c parser
does not report an XML
declaration that does not
contain an ExternalID or
internal DTD subset. After
update, the DOCTYPE
declaration would be missing
in this case.

<!DOCTYPE books SYSTEM
"http://dtds.org/books.dtd" >

<!DOCTYPE books PUBLIC
"local.books.dtd" "http://dtds.org/books.dtd" >

<!DOCTYPE books>
-Any of
<!DOCTYPE books

(S ExternalID) ?
[internal-dtd-subset] >

-Such as
<!DOCTYPE books
[<!ENTITY mydog "Spot">] >?
[internal-dtd-subset] >

Processing
Instructions

<?xml-stylesheet
title="compact"
href="datatypes1.xsl"
type="text/xsl"?>

Processing instructions are
preserved.

Comments <!-- comment --> Comments are preserved when
inside the root element.

Comments outside the root
element are discarded.

Elements <books>
content
</books>

Elements are preserved.

Attributes id='1' date="01/02/1997" Attributes of elements are
preserved.

v After update, double quotes
are used to delineate values.

v Data within attributes is
escaped.

v Entities are replaced.

Text Nodes This chapter is about
my dog &mydoc;.

Text nodes (element content)
are preserved.

v Data within text nodes is
escaped.

v Entities are replaced.

Chapter 12. XML Extender user-defined functions 185

Multiple occurrence
When a location path is provided in the Update() UDF, the content of every element
or attribute with a matching path is updated with the supplied value. This means
that if a document has multiple occurring locations paths, the Update function
replaces the existing values with the value provided in the value parameter.

You can use specify a predicate in the path parameter to provide distinct locations
paths to prevent unintentional updates. Note, that the Update UDF supports location
paths that have predicates with attributes, but not elements. See “Parameters” on
page 183 for more information.

Examples
The following examples show instances of an XML document before and after an
update.

Table 47. XML documents before and after an update

Example 1:

Before:

<?xml version='1.0' encoding='utf-8' standalone="yes"?>
<!DOCTYPE book PUBLIC "public.dtd" "system.dtd">
<?pitarget option1='value1' option2='value2'?>
<!-- comment -->
<book>
<chapter id="1" date='07/01/1997'>
<!-- first section -->
<section>This is a section in Chapter One.</section>

</chapter>
<chapter id="2" date="01/02/1997">
<section>This is a section in Chapter Two.</section>
<footnote>A footnote in Chapter Two is here.</footnote>

</chapter>
<price date="12/22/1998" time="11.12.13"

timestamp="1998-12-22-11.12.13.888888">38.281</price>
</book>

v Contains white
space in the
XML declaration

v Specifies a
processing
instruction

v Contains a
comment
outside of the
root node

v Specifies
PUBLIC
ExternalID

v Contains a
comment inside
of root note

After:

<?xml version='1.0' encoding='utf-8' standalone='yes'?>
<!DOCTYPE book PUBLIC "public.dtd" "system.dtd">
<?pitarget option1='value1' option2='value2'?><book>
<chapter id="1" date="07/01/1997">

<!-- first section -->
<section>This is a section in Chapter One.</section>

</chapter>
<chapter id="2" date="01/02/1997">

<section>This is a section in Chapter Two.</section>
<footnote>A footnote in Chapter Two is here.</footnote>

</chapter>
<price date="12/22/1998" time="11.12.13"

timestamp="1998-12-22-11.12.13.888888">60.02</price>
</book>

v White space
inside of markup
is eliminated

v Processing
instruction is
preserved

v Comment
outside of the
root node is not
preserved

v PUBLIC
ExternalID is
preserved

v Comment inside
of root node is
preserved

v Changed value
is the value of
the <price>
element

186 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Table 47. XML documents before and after an update (continued)

Example 2:

Before:

<?xml version='1.0' ?>
<!DOCTYPE book>
<!-- comment -->
<book>
...

</book>

Contains
DOCTYPE
declaration without
an ExternalID or
an internal DTD
subset. Not
supported.

After:

<?xml version='1.0'?>
<book>
...

</book>

DOCTYPE
declaration is not
reported by the
XML parser and
not preserved.

Example 3:

Before:

<?xml version='1.0' ?>
<!DOCTYPE book [<!ENTITY myDog "Spot">]>
<!-- comment -->
<book>
<chapter id="1" date='07/01/1997'>

<!-- first section -->
<section>This is a section in Chapter
One about my dog &;myDog;.</section>

...
</chapter>
...

</book>

v Contains white
space in markup

v Specifies
internal DTD
subset

v Specifies entity
in text node

After:

<?xml version='1.0'?>
<!DOCTYPE book>
<book>
<chapter id="1" date="07/01/1997">

<!-- first section -->
<section>This is a section in Chapter
One about my dog Spot.</section>
...

</chapter>
...

</book>

v White space in
markup is
eliminated

v Internal DTD
subset is not
preserved

v Entity in text
node is resolved
and replaced

Chapter 12. XML Extender user-defined functions 187

Generate unique function

Purpose
The generate unique function returns a character string that is unique compared to
any other execution of the same function. There are no arguments to this function
(the empty parentheses must be specified). The result of the function is a unique
value. The result cannot be null.

Syntax

�� db2xml.generate_unique() �

Return value
VARCHAR(13)

Example
The following example uses db2xml.generate_unique() to generate a unique key for
a column to be indexed.
<SQL_stmt>
SELECT o.order_key, customer_name, customer_email, p.part_key, color, quantity,
price, tax, ship_id, date, mode from order_tab o, part_tab p,
table (select db2xml.generate_unique()
as ship_id, date, mode, part_key from ship_tab) s

WHERE o.order_key = 1 and
p.price > 20000 and
p.order_key = o.order_key and
s.part_key = p.part_key

ORDER BY order_key, part_key, ship_id
</SQL_stmt>

188 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 13. XML Extender stored procedures

The XML Extender provides stored procedures for administration and management
of XML columns and collections. These stored procedures can be called from the
DB2 client. The client interface can be embedded in SQL, ODBC, or JDBC. Refer
to the section on stored procedures in the DB2 UDB for OS/390 Administration
Guide for details on how to call stored procedures.

The stored procedures use the schema DB2XML, which is the schema name of the
XML Extender.

The XML Extender provides three types of stored procedures:

v “Administration stored procedures” on page 191, which assist users in completing
administrative tasks

v “Composition stored procedures” on page 198, which generate XML documents
using data in existing database tables

v “Decomposition stored procedures” on page 206, which break down or shred
incoming XML documents and store data in new or existing database tables

The parameter limits used by the XML collection stored procedures are documented
in “Appendix D. The XML Extender limits” on page 263.

Specifying include files
Ensure that you include the XML Extender external header files in the program that
calls stored procedures. The header files are located in the dxx_install/include
directory. dxx_install is the installation directory for the XML Extender. It is
operating system dependent. The header files are:

dxx.h The XML Extender defined constant and data types

dxxrc.h The XML Extender return code

The syntax for including these header files is:
#include "dxx.h"
#include "dxxrc.h"

Make sure that the path of the include files is specified in your makefile with the
compilation option.

Calling XML Extenders stored procedures
In general, call the XML Extender using the following syntax:
CALL DB2XML.function_entry_point

Where:

function_entry_point
Specifies the arguments passed to the stored procedure.

In the CALL statement, the arguments that are passed to the stored procedure must
be host variables, not constants or expressions. The host variables can have null
indicators.

© Copyright IBM Corp. 2000, 2001 189

See samples for calling stored procedures in the dxx_install/samples/c and
dxx_install/samples/cli directories, and in the following sections of this book:
“Composing the XML document” on page 31 and “Chapter 9. Managing XML
collection data” on page 121. In the dxx_install/samples/c directory, SQC code
files are provided to call XML collection stored procedures using embedded SQL. In
the dxx_install/samples/cli directory, the sample files show how to call stored
procedures using the Call Level Interface (CLI).

Increasing the CLOB limit
The default limit for CLOB parameter when passed to a stored procedure is 1 MB.
You can increase the limit by completing the following steps:

1. Drop each stored procedure. For example:
db2 "drop procedure DB2XML.dxxShredXML"

2. Create a new procedure with the increased CLOB limit. For example:
db2 "create procedure DB2XML.dxxShredXML(in dadBuf clob(100K),

in XMLObj clob(10M),
out returnCode integer,
out returnMsg varchar(1024)
)

external name 'DB2XML.dxxShredXML'
language C
parameter style DB2DARI
not deterministic
fenced
null call;

190 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|
|
|
|
|
|
|

Before you begin
Run the DXXGPREP JCL job before working with stored procedures. See
“Initializing the XML Extender environment using DXXGPREP” on page 39 to learn
more about initializing the XML Extender before running stored procedures.

Administration stored procedures
These stored procedures are used for administration tasks, such as enabling or
disabling an XML column or collection. They are called by the XML Extender
administration wizard and the administration command DXXADM. These stored
procedures are:

v dxxEnableDB()

v dxxDisableDB()

v dxxEnableColumn()

v dxxDisableColumn()

v dxxEnableCollection()

v dxxDisableCollection()

Chapter 13. XML Extender stored procedures 191

dxxEnableSRV()

Purpose
Enables the database server. When the database server is enabled, the XML
Extender creates the following objects:

v The XML Extender user-defined types (UDTs)

v The XML Extender user-defined functions (UDFs)

v The XML Extender stored procedures

v The XML Extender DTD reference table, DTD_REF, which stores DTDs and
information about each DTD. For a complete description of the DTD_REF table,
see “DTD reference table” on page 213.

v The XML Extender usage table, XML_USAGE, which stores common information
for each column that is enabled for XML and for each collection. For a complete
description of the XML_USAGE table, see “XML usage table” on page 213.

Format
dxxEnableSRV(long returnCode, /* output */

varchar(1024) returnMsg) /* output */
varchar (254) tbspaceNames /* input */
varchar (64) wlmNames /* input */
varchar (18) extSecurity /* input */

Parameters
Table 48. dxxEnableSRV() parameters

Parameter Description IN/OUT parameter

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in
case of error.

OUT

tbspaceNames The name of the table spaces used
for administration tables, DTD_REF
and XML_USAGE

IN

wlmNames The names of the WLM
environments.

IN

extSecurity The external security option; values
can be DB2 (default), USER, or
DEFINER

IN

192 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

dxxDisableSRV()

Purpose
Disables the database server. When the XML Extender disables the database
server, it drops the following objects:

v The XML Extender user-defined types (UDTs).

v The XML Extender user-defined functions (UDFs).

v The XML Extender DTD reference table, DTD_REF, which stores DTDs and
information about each DTD. For a complete description of the DTD_REF table,
see “DTD reference table” on page 213.

v The XML Extender usage table, XML_USAGE, which stores common information
for each column that is enabled for XML and for each collection. For a complete
description of the XML_USAGE table, see “XML usage table” on page 213.

Important: You must disable all XML columns before attempting to disable a
database server. The XML Extender cannot disable a database server that contains
tables with columns or collections that are enabled for XML.

Format
dxxDisableSRV(char(

long returnCode, /* output */
varchar(1024) returnMsg) /* output */

Parameters
Table 49. dxxDisableDB() parameters

Parameter Description IN/OUT parameter

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in
case of error.

OUT

Chapter 13. XML Extender stored procedures 193

dxxEnableColumn()

Purpose
Enables an XML column. When enabling a column, the XML Extender completes
the following tasks:

v Determines whether the XML table has a primary key; if not, the XML Extender
alters the XML table and adds a column called DXXROOT_ID.

v Creates side tables that are specified in the DAD file with a column containing a
unique identifier for each row in the XML table. This column is either the root_id
that is specified by the user, or it is the DXXROOT_ID that was named by the
XML Extender.

v Creates a default view for the XML table and its side tables, optionally using a
name you specify.

Format
dxxEnableColumn(char(tbName) tbName, /* input */

char(colName) colName, /* input */
CLOB(100K) DAD, /* input */
char(tablespace) tablespace, /* input */
char(defaultView) defaultView, /* input */
char(rootID) rootID, /* input */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

Parameters
Table 50. dxxEnableColumn() parameters

Parameter Description IN/OUT parameter

tbName The name of the table containing
the XML column.

IN

colName The name of the XML column. IN

DAD A CLOB containing the DAD file. IN

tablespace The table space that contains the
side tables other than the default
table space. If not specified, the
default table space is used.

IN

defaultView The name of the default view joining
the application table and side
tables.

IN

rootID The name of the single primary key
in the application table that is to be
used as the root ID for the side
table.

IN

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in
case of error.

OUT

194 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

dxxDisableColumn()

Purpose
Disables the XML-enabled column. When an XML column is disabled, it can no
longer contain XML data types.

Format
dxxDisableColumn(char(tbName) tbName, /* input */

char(colName) colName, /* input */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

Parameters
Table 51. dxxDisableColumn() parameters

Parameter Description IN/OUT parameter

tbName The name of the table containing
the XML column.

IN

colName The name of the XML column. IN

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in
case of error.

OUT

Chapter 13. XML Extender stored procedures 195

dxxEnableCollection()

Purpose
Enables an XML collection that is associated with an application table.

Format
dxxEnableCollection(char() dbName, /* input */

char(colName) colName, /* input */
CLOB(100K) DAD, /* input */
char(tablespace) tablespace, /* input */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

Parameters
Table 52. dxxEnableCollection() parameters

Parameter Description IN/OUT parameter

colName The name of the XML collection. IN

DAD A CLOB containing the DAD file. IN

tablespace The table space that contains the
side tables other than the default
table space. If not specified, the
default table space is used.

IN

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned
in case of error.

OUT

196 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

dxxDisableCollection()

Purpose
Disables an XML-enabled collection, removing markers that identify tables and
columns as part of a collection.

Format
dxxDisableCollection(char(colName) colName, /* input */

long returnCode, /* output */
varchar(1024) returnMsg) /* output */

Parameters
Table 53. dxxDisableCollection() parameters

Parameter Description IN/OUT parameter

colName The name of the XML collection. IN

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in
case of error.

OUT

Chapter 13. XML Extender stored procedures 197

Composition stored procedures
The composition stored procedures dxxGenXML() and dxxRetrieveXML() are used
to generate XML documents using data in existing database tables. The
dxxGenXML() stored procedure takes a DAD file as input; it does not require an
enabled XML collection. The dxxRetrieveXML() stored procedure takes an enabled
XML collection name as input.

198 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

dxxGenXML()

Purpose
Constructs XML documents using data that is stored in the XML collection tables
that are specified by the <Xcollection> in the DAD file and inserts each XML
document as a row into the result table. You can also open a cursor on the result
table and fetch the result set.

To provide flexibility, dxxGenXML() also lets the user specify the maximum number
of rows to be generated in the result table. This decreases the amount of time the
application must wait for the results during any trial process. The stored procedure
returns the number of actual rows in the table and any error information, including
error codes and error messages.

To support dynamic query, dxxGenXML() takes an input parameter, override. Based
on the input overrideType, the application can override the SQL_stmt for SQL
mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.
The input parameter overrideType is used to clarify the type of the override. For
details about the override parameter, see “Dynamically overriding values in the DAD
file” on page 126.

Format
dxxGenXML(CLOB(100K) DAD, /* input */

char(32) resultTabName, /* input */
char(30) result_column, /* input */
char(30) valid_column, /* input */
integer overrideType /* input */
varchar(1024) override, /* input */
integer maxRows, /* input */
integer numRows, /* output */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

Chapter 13. XML Extender stored procedures 199

Parameters
Table 54. dxxGenXML() parameters

Parameter Description IN/OUT
parameter

DAD A CLOB containing the DAD file. IN

resultTabName The name of the result table, which should
exist before the call. The table contains
only one column of either XMLVARCHAR
or XMLCLOB type.

IN

overrideType A flag to indicate the type of the following
override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an
SQL_stmt.

v XML_OVERRIDE: Override by an
XPath-based condition.

IN

override Overrides the condition in the DAD file.
The input value is based on the
overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL
statement. Using this overrideType
requires that SQL mapping is used in
the DAD file. The input SQL statement
overrides the SQL_stmt in the DAD file.

v XML_OVERRIDE: A string that contains
one or more expressions in double
quotation marks separated by ″AND″.
Using this overrideType requires that
RDB_node mapping is used in the DAD
file.

IN

maxRows The maximum number of rows in the result
table.

IN

numRows The actual number generated rows in the
result table.

OUT

returnCode The return code from the stored procedure. OUT

returnMsg The message text that is returned in case
of error.

OUT

Examples
The following example fragment assumes that a result table is created with the
name of XML_ORDER_TAB, and that the table has one column of XMLVARCHAR
type. A complete, working sample is located in DXXSAMPLES/QCSRC(GENX).
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE is CLOB(100K) dad; /* DAD */
EXEC SQL DECLARE :dad VARIABLE CCSID 1047;

/* specifies the CCSID for DAD when running from USS */
/* to ensure that DB2 converts the code page correctly*/

char result_tab[32]; /* name of the result table */
char result_colname[32]; /* name of the result column */

200 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

char valid_colname[32]; /* name of the valid column, will set to NULL */
char override[2]; /* override, will set to NULL*/
short overrideType; /* defined in dxx.h */
short max_row; /* maximum number of rows */
short num_row; /* actual number of rows */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short dad_ind;
short rtab_ind;
short rcol_ind;
short vcol_ind;
short ovtype_ind;
short ov_ind;
short maxrow_ind;
short numrow_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

FILE *file_handle;
long file_length=0;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initialize the DAD CLOB object. */
file_handle = fopen("/dxx/samples/dad/getstart_xcollection.dad", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &dad.data;

, 1, FILE_SIZE, file_handle);
if (file_length == 0) {
printf ("Error reading dad file

/dxx/samples/dad/getstart_xcollection.dad\n");
rc = -1;
goto exit;

} else
dad.length = file_length;

}
else {
printf("Error opening dad file \n",);
rc = -1;
goto exit;

}
/* initialize host variable and indicators */
strcpy(result_tab,"xml_order_tab");
strcpy(result_colname, "xmlorder")
valid_colname = '\0';
override[0] = '\0';
overrideType = NO_OVERRIDE;
max_row = 500;
num_row = 0;
returnCode = 0;
msg_txt[0] = '\0';
dad_ind = 0;
rtab_ind = 0;
rcol_ind = 0;
vcol_ind = -1;
ov_ind = -1;
ovtype_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXGENXML" (:dad:dad_ind;

:result_tab:rtab_ind,

Chapter 13. XML Extender stored procedures 201

:result_colname:rcol_ind,
:valid_colname:vcol_ind,
:overrideType:ovtype_ind,:override:ov_ind,
:max_row:maxrow_ind,:num_row:numrow_ind,
:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

exit:
return rc;

202 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

dxxRetrieveXML()

Purpose
Enables the same DAD file to be used for both composition and decomposition.
The stored procedure dxxRetrieveXML() also serves as a means for retrieving
decomposed XML documents. As input, dxxRetrieveXML() takes a buffer containing
the DAD file, the name of the created result table, and the maximum number of
rows to be returned. It returns a result set of the result table, the actual number of
rows in the result set, an error code, and message text.

To support dynamic query, dxxRetrieveXML() takes an input parameter, override.
Based on the input overrideType, the application can override the SQL_stmt for
SQL mapping or the conditions in RDB_node for RDB_node mapping in the DAD
file. The input parameter overrideType is used to clarify the type of the override. For
details about the override parameter, see “Dynamically overriding values in the DAD
file” on page 126.

The requirements of the DAD file for dxxRetrieveXML() are the same as the
requirements for dxxGenXML(). The only difference is that the DAD is not an input
parameter for dxxRetrieveXML(), but it is the name of an enabled XML collection.

Format
dxxRetrieveXML(char(32) collectionName, /* input */

char(32) resultTabName, /* input */
char(30) result_column, /* input */
char(30) valid_column, /* input */
integer overrideType, /* input */
varchar(1024) override, /* input */
integer maxRows, /* input */
integer numRows, /* output */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

Chapter 13. XML Extender stored procedures 203

Parameters
Table 55. dxxRetrieveXML() parameters

Parameter Description IN/OUT
parameter

collectionName The name of an enabled XML collection. IN

resultTabName The name of the result table, which
should exist before the call. The table
contains only one column of either
XMLVARCHAR or XMLCLOB type.

IN

overrideType A flag to indicate the type of the following
override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an
SQL_stmt.

v XML_OVERRIDE: Override by an
XPath-based condition.

IN

override Overrides the condition in the DAD file.
The input value is based on the
overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL
statement. Using this overrideType
requires that SQL mapping is used in
the DAD file. The input SQL statement
overrides the SQL_stmt in the DAD file.

v XML_OVERRIDE: A string that contains
one or more expressions in double
quotation marks, separated by ″AND″.
Using this overrideType requires that
RDB_node mapping is used in the DAD
file.

IN

maxRows The maximum number of rows in the
result table.

IN

numRows The actual number of generated rows in
the result table.

OUT

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in case
of error.

OUT

Examples
The following fragment is an example of a call to dxxRetrieveXML(). In this
example, a result table is created with the name of XML_ORDER_TAB, and it has
one column of XMLVARCHAR type. A complete, working sample is located in
DXXSAMPLES/QCSRC(RTRX).
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char collectionName[32]; /* name of an XML collection */
char result_tab[32]; /* name of the result table */
char result_colname[32]; /* name of the result column */
char valid_colname[32]; /* name of the valid column, will set to NULL*/

204 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

char override[2]; /* override, will set to NULL*/
short overrideType; /* defined in dxx.h */
short max_row; /* maximum number of rows */
short num_row; /* actual number of rows */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short collectionName_ind;
short rtab_ind;
short rcol_ind;
short vcol_ind;
short ovtype_ind;
short ov_ind;
short maxrow_ind;
short numrow_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initial host variable and indicators */
strcpy(collection, "sales_ord");
strcpy(result_tab,"xml_order_tab");
strcpy(result_col,"xmlorder");
valid_colname[0] = '\0';
override[0] = '\0';
overrideType = NO_OVERRIDE;
max_row = 500;
num_row = 0;
returnCode = 0;
msg_txt[0] = '\0';
collectionName_ind = 0;
rtab_ind = 0;
rcol_ind = 0;
vcol_ind = -1;
ov_ind = -1;
ovtype_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXRETRIEVE" (:collectionName:collectionName_ind,

:result_tab:rtab_ind,
:result_colname:rcol_ind,
:valid_colname:vcol_ind,
:overrideType:ovtype_ind,:override:ov_ind,
:max_row:maxrow_ind,:num_row:numrow_ind,
:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

Chapter 13. XML Extender stored procedures 205

Decomposition stored procedures
The decomposition stored procedures dxxInsertXML() and dxxShredXML() are used
to break down or shred incoming XML documents and to store data in new or
existing database tables. The dxxInsertXML() stored procedure takes an enabled
XML collection name as input. The dxxShredXML() stored procedure takes a DAD
file as input; it does not require an enabled XML collection.

206 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

dxxShredXML()

Purpose
Decomposes XML documents, based on a DAD file mapping, storing the content of
the XML elements and attributes in specified DB2 tables. In order for
dxxShredXML() to work, all tables specified in the DAD file must exist, and all
columns and their data types that are specified in the DAD must be consistent with
the existing tables. The stored procedure requires that the columns specified in the
join condition, in the DAD, correspond to primary- foreign key relationships in the
existing tables. The join condition columns that are specified in the RDB_node of
the root element_node must exist in the tables.

The stored procedure fragment in this section is a sample for explanation purposes.
A complete, working sample is located in DXXSAMPLES/QCSRC(X).

Format
dxxShredXML(CLOB(100K) DAD, /* input */

CLOB(1M) xmlobj, /* input */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

Chapter 13. XML Extender stored procedures 207

Parameters
Table 56. dxxShredXML() parameters

Parameter Description IN/OUT
parameter

DAD A CLOB containing the DAD file. IN

xmlobj An XML document object in XMLCLOB
type.

IN

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in case
of error.

OUT

Examples
The following fragment is an example of a call to dxxShredXML(). A complete,
working sample is located in DXXSAMPLES/QCSRC(SHDX).
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE is CLOB(100K) dad; /* DAD */
EXEC SQL DECLARE :dad VARIABLE CCSID 1047;

/* specifies the CCSID for DAD when running from USS */
/* to ensure that DB2 converts the code page correctly*/

SQL TYPE is CLOB(100K) xmlDoc; /* input xml document */
EXEC SQL DECLARE :xmlDoc VARIABLE CCSID 1047;

/* specifies the CCSID for DAD when running */
/* from USS to ensure that DB2 converts the */
/* code page correctly */

long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short dad_ind;
short xmlDoc_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

FILE *file_handle;
long file_length=0;

/* initialize the DAD CLOB object. */
file_handle = fopen("/dxx/samples/dad/getstart_xcollection.dad", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &dad.data;

, 1, FILE_SIZE, file_handle);
if (file_length == 0) {
printf ("Error reading dad file getstart_xcollection.dad\n");
rc = -1;
goto exit;

} else
dad.length = file_length;

}
else {
printf("Error opening dad file \n");
rc = -1;
goto exit;

}

/* Initialize the XML CLOB object. */
file_handle = fopen("/dxx/samples/xml/getstart_xcollection.xml", "r");
if (file_handle != NULL) {

208 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

file_length = fread ((void *) &xmlDoc.data;
, 1, FILE_SIZE,

file_handle);
if (file_length == 0) {
printf ("Error reading xml file getstart_xcollection.xml \n");
rc = -1;
goto exit;

} else
xmlDoc.length = file_length;

}
else {
printf("Error opening xml file \n");
rc = -1;
goto exit;

}

/* initialize host variable and indicators */
returnCode = 0;
msg_txt[0] = '\0';
dad_ind = 0;
xmlDoc_ind = 0;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXSHRED" (:dad:dad_ind;

:xmlDoc:xmlDoc_ind,
:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

exit:
return rc;

Chapter 13. XML Extender stored procedures 209

dxxInsertXML()

Purpose
Takes two input parameters, the name of an enabled XML collection and the XML
document that are to be decomposed, and returns two output parameters, a return
code and a return message.

Format
dxxInsertXML(char(32) collectionName, /* input */

CLOB(1M) xmlobj, /* input */
long returnCode, /* output */
varchar(1024) returnMsg) /* output */

210 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Parameters
Table 57. dxxInsertXML() parameters

Parameter Description IN/OUT parameter

collectionName The name of an enabled XML
collection.

IN

xmlobj An XML document object in CLOB
type.

IN

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in
case of error.

OUT

Examples
In the following fragment example, the dxxInsertXML() call decomposes the input
XML document dxxinstall/xml/order1.xml and inserts data into the
SALES_ORDER collection tables according to the mapping that is specified in the
DAD file with which it was enabled with. A complete, working sample is located in
DXXSAMPLES/QCSRC(INSX).
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char collectionName[32]; /* name of an XML collection */
SQL TYPE is CLOB(100K) xmlDoc; /* input xml document */
long returnCode; /* return error code */
char returnMsg[1024]; /* error message text */
short collectionName_ind;
short xmlDoc_ind;
short returnCode_ind;
short returnMsg_ind;
EXEC SQL END DECLARE SECTION;

FILE *file_handle;
long file_length=0;

/* initialize the DAD CLOB object. */
file_handle = fopen("/dxx/samples/dad/getstart_xcollection.dad", "r");
if (file_handle != NULL) {
file_length = fread ((void *) , &dad.data;

1, FILE_SIZE, file_handle);
if (file_length == 0) {
printf ("Error reading dad file getstart_xcollection.dad\n");
rc = -1;
goto exit;

} else
dad.length = file_length;

}
else {
printf("Error opening dad file \n");
rc = -1;
goto exit;

}

/* initialize host variable and indicators */
strcpy(collectionName, "sales_ord");
returnCode = 0;
msg_txt[0] = '\0';
collectionName_ind = 0;
xmlDoc_ind = 0;

Chapter 13. XML Extender stored procedures 211

returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXINSERTXML" (:collection_name:collection_name_ind,

:xmlDoc:xmlDoc_ind,
:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;

else
EXEC SQL COMMIT;

}

exit:
return rc;

212 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 14. Administration support tables

When a database is enabled, a DTD reference table, DTD_REF, and an
XML_USAGE table are created. The DTD_REF table contains information about all
of the DTDs. The XML_USAGE table stores common information for each
XML-enabled column. Each is created with specific PUBLIC privileges.

The parameter limits listed in the support tables are also documented in
“Appendix D. The XML Extender limits” on page 263.

DTD reference table
The XML Extender also serves as an XML DTD repository. When a database is
XML-enabled, a DTD reference table, DTD_REF, is createdMzWUDTD_REFvwIowWUDTD_REe+Uofv3kkMzWzWUisv3kkMzWUtabl�isv&}®e}bzWUr�stor�cumSsMd,v3kkMzWUav3kkMzWUDTDv3kkMzWUwithv3kkMaddiRmatalithv3kkMwRam�azWUdmonv3kkMzWUinformat. CzWUsevqUsv3kkMzzWUanv3kkMacwMncssUofv3kkMzWzWUisv3kkMzWUtabl,achv&}®e}beqzkwR. }wzWUandv3kkMntaWUsertv3kkMzU. WhiqwMrv3kkMownWUav3kkMzWUDTDs. Thev3kkMzWUDwMdv3kkMzWUinv3kkMzWUthev3kkMzWUDTD_REFv3kkMzWUtablev3kkMzWUarev3kkMusMntedv3kkMtalsov3kkMvalidqwMatach

Table 59. XML_USAGE table

Column name Description

table_schema For XML column, the schema name of the
user table that contains an XML column. For
XML collection, a value of ″DXX_COLL″ as
the default schema name.

table_name For XML column, the name of the user table
that contains an XML column. For XML
collection, a value ″DXX_COLLECTION,″
which identifies the entity as a collection.

col_name The name of the XML column or XML
collection. It is part of the composite key
along with the table_name.

DTDID A string associating a DTD inserted into
DTD_REF with a DTD specifid in a DAD file;
this value must match the value of the
DTDID element in the DAD. This column is a
foreign key.

DAD The content of the DAD file that is
associated with the column or collection.

row_id An identifier of the row.

access_mode Specifies which access mode is used: 1 for
XML collection, 0 for XML column

default_view Stores the default view name if there is one.

trigger_suffix Not NULL. For unique trigger names.

validation 1 for yes, 0 for no.

Do not add, modify or delete entries from the XML_USAGE table; it is for XML
Extender internal use only.

Privileges granted to PUBLIC

For XML_USAGE, the privilege of SELECT is granted for PUBLIC. INSERT,
DELETE, and UPDATE are granted to DB2XML.

214 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Chapter 15. Troubleshooting

All embedded SQL statements in your program and DB2 command line interface
(CLI) calls in your program, including those that invoke the DB2 XML Extender
user-defined functions (UDFs), generate codes that indicate whether the embedded
SQL statement or DB2 CLI call executed successfully.

Your program can retrieve information that supplements these codes. This includes
SQLSTATE information and error messages. You can use this diagnostic
information to isolate and fix problems in your program.

Occasionally the source of a problem cannot be easily diagnosed. In these cases,
you might need to provide information to your Software Support Provider to isolate
and fix the problem. The XML Extender includes a trace facility that records the
XML Extender activity. The trace information can be valuable input to Software
Service Provider. You should use the trace facility only under instruction from
Software Service Provider.

This chapter describes how to access this diagnostic information. It describes:

v How to handle XML Extender UDF return codes.

v How to control tracing

It also lists and describes the SQLSTATE codes and error messages that the XML
Extender might return.

Handling UDF return codes
Embedded SQL statements return codes in the SQLCODE, SQLWARN, and
SQLSTATE fields of the SQLCA structure. This structure is defined in an SQLCA
INCLUDE file. (For more information about the SQLCA structure and SQLCA
INCLUDE file, see the DB2 Application Development GuideDB2 Application
Programming and SQL Guide.)

DB2 CLI calls return SQLCODE and SQLSTATE values that you can retrieve using
the SQLError function. (For more information about retrieving error information with
the SQLError function, see the CLI Guide and ReferenceODBC Guide and
Reference.)

An SQLCODE value of 0 means that the statement ran successfully (with possible
warning conditions). A positive SQLCODE value means that the statement ran
successfully but with a warning. (Embedded SQL statements return information
about the warning that is associated with 0 or positive SQLCODE values in the
SQLWARN field.) A negative SQLCODE value means that an error occurred.

DB2 associates a message with each SQLCODE value. If an XML Extender UDF
encounters a warning or error condition, it passes associated information to DB2 for
inclusion in the SQLCODE message.

Embedded SQL statements and DB2 CLI calls that invoke the DB2 XML Extender
UDFs might return SQLCODE messages and SQLSTATE values that are unique to
these UDFs, but DB2 returns these values in the same way as it does for other
embedded SQL statements or other DB2 CLI calls. Thus, the way you access these
values is the same as for embedded SQL statements or DB2 CLI calls that do not
start the DB2 XML Extender UDFs.

© Copyright IBM Corp. 2000, 2001 215

See “SQLSTATE codes” on page 217 for the SQLSTATE values and the message
number of associated messages that can be returned by the XML Extender. See
“Messages” on page 221 for information about each message.

Handling stored procedure return codes
The XML Extender provides return codes to help resolve problems with stored
procedures. When you receive a return code from a stored procedure, check the
following file, which matches the return code with an XML Extender error message
number and the symbolic constant.
DXX_INSTALL/include/dxxrc.h

You can reference the error message number in “Messages” on page 221 and use
the diagnostic information in the explanation.

216 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

SQLSTATE codes
Table 60 lists and describes the SQLSTATE values that the XML Extender returns.
The description of each SQLSTATE value includes its symbolic representation. The
table also lists the message number that is associated with each SQLSTATE value.
See “Messages” on page 221 for information about each message.

Table 60. SQLSTATE codes and associated message numbers

SQLSTATE Message No. Description

00000 DXXnnnnI No error has occurred.

01HX0 DXXD003W The element or attribute specified in
the path expression is missing from
the XML document.

38X00 DXXC000E The XML Extender is unable to
open the specified file.

38X01 DXXA072E XML Extender tried to automatically
bind the database before enabling it,
but could not find the bind files

DXXC001E The XML Extender could not find
the file specified.

38X02 DXXC002E The XML Extender is unable to read
data from the specified file.

38X03 DXXC003E The XML Extender is unable to write
data to the file.

DXXC011E The XML Extender is unable to write
data to the trace control file.

38X04 DXXC004E The XML Extender was unable to
operate the specified locator.

38X05 DXXC005E The file size is greater than the
XMLVarchar size and the XML
Extender is unable to import all the
data from the file.

38X06 DXXC006E The file size is greater than the size
of the XMLCLOB and the XML
Extender is unable to import all the
data from the file.

38X07 DXXC007E The number of bytes in the LOB
Locator does not equal the file size.

38X08 DXXD001E A scalar extraction function used a
location path that occurs multiple
times. A scalar function can only use
a location path that does not have
multiple occurence.

38X09 DXXD002E The path expression is syntactically
incorrect.

38X10 DXXG002E The XML Extender was unable to
allocate memory from the operating
system.

38X11 DXXA009E This stored procedure is for XML
Column only.

Chapter 15. Troubleshooting 217

Table 60. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message No. Description

38X12 DXXA010E While attempting to enable the
column, the XML Extender could not
find the DTD ID, which is the
identifier specified for the DTD in the
document access definition (DAD)
file.

38X14 DXXD000E There was an attempt to store an
invalid document into a table.
Validation has failed.

38X15 DXXA056E The validation element in document
access definition (DAD) file is wrong
or missing.

DXXA057E The name attribute of a side table in
the document access definition
(DAD) file is wrong or missing.

DXXA058E The name attribute of a column in
the document access definition
(DAD) file is wrong or missing.

DXXA059E The type attribute of a column in the
document access definition (DAD)
file is wrong or missing.

DXXA060E The path attribute of a column in the
document access definition (DAD)
file is wrong or missing.

DXXA061E The multi_occurrence attribute of a
column in the document access
definition (DAD) file is wrong or
missing.

DXXQ000E A mandatory element is missing
from the document access definition
(DAD) file.

38X16 DXXG004E A null value for a required parameter
was passed to an XML stored
procedure.

38X17 DXXQ001E The SQL statment in the document
access definition (DAD) or the one
that overrides it is not valid. A
SELECT statement is required for
generating XML documents.

38X18 DXXG001E XML Extender encountered an
internal error.

DXXG006E XML Extender encountered an
internal error while using CLI.

38X19 DXXQ002E The system is running out of space
in memory or disk. There is no
space to contain the resulting XML
documents.

218 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Table 60. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message No. Description

38X20 DXXQ003W The user-defined SQL query
generates more XML documents
than the specified maximum. Only
the specified number of documents
are returned.

38X21 DXXQ004E The specified column is not one of
the columns in the result of the SQL
query.

38X22 DXXQ005E The mapping of the SQL query to
XML is incorrect.

38X23 DXXQ006E An attribute_node element in the
document access definition(DAD)
file does not have a name attribute.

38X24 DXXQ007E The attribute_node element in the
document access definition (DAD)
does not have a column element or
RDB_node.

38X25 DXXQ008E A text_node element in the
document access definition (DAD)
file does not have a column
element.

38X26 DXXQ009E The specified result table could not
be found in the system catalog.

38X27 DXXQ010E The RDB_node of the
attribute_node or text_node must
have a table.

DXXQ011E The RDB_node of the
attribute_node or text_node must
have a column.

DXXQ017E An XML document generated by the
XML Extender is too large to fit into
the column of the result table.

38X28 DXXQ012E XML Extender could not find the
expected element while processing
the DAD.

DXXQ016E All tables must be defined in the
RDB_node of the top element in the
document access definition (DAD)
file. Sub-element tables must match
the tables defined in the top
element. The table name in this
RDB_node is not in the top element.

38X29 DXXQ013E The element table or column must
have a name in the document
access definition (DAD) file.

DXXQ015E The condition in the condition
element in the document access
definition (DAD) has an invalid
format.

Chapter 15. Troubleshooting 219

Table 60. SQLSTATE codes and associated message numbers (continued)

SQLSTATE Message No. Description

38X30 DXXQ014E An element_node element in the
document access definition (DAD)
file does not have a name attribute.

DXXQ018E The ORDER BY clause is missing
from the SQL statement in a
document access definition (DAD)
file that maps SQL to XML.

38X31 DXXQ019E The objids element does not have a
column element in the document
access definition (DAD) file that
maps SQL to XML.

38X36 DXXA073E The database was not bound when
user tried to enable it.

38X37 DXXG007E The server operating system locale
is inconsistent with DB2 code page.

38X38 DXXG008E The server operating system locale
can not be found in the code page
table.

38x33 DXXG005E This parameter is not supported in
this release, will be supported in the
future release.

38x34 DXXG000E An invalid file name was specified.

220 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Messages
The XML Extender provides error messages to help with problem determination.

Error messages
The XML Extender generates the following messages when it completes an
operation or detects an error.

DXXA000I Enabling column <column_name>.
Please Wait.

Explanation: This is an informational messages.

User Response: No action required.

DXXA001S An unexpected error occurred in build
<build_ID>, file <file_name>, and line
<line_number>.

Explanation: An unexpected error occurred.

User Response: If this error persists, contact your
Software Service Provider. When reporting the error, be
sure to include all the message text, the trace file, and
an explanation of how to reproduce the problem.

DXXA002I Connecting to database <database>.

Explanation: This is an informational message.

User Response: No action required.

DXXA003E Cannot connect to database
<database>.

Explanation: The database specified might not exist
or could be corrupted.

User Response:

1. Ensure the database is specified correctly.

2. Ensure the database exists and is accessible.

3. Determine if the database is corrupted. If it is, ask
your database adminstrator to recover it from a
backup.

DXXA004E Cannot enable database <database>.

Explanation: The database might already be enabled
or might be corrupted.

User Response:

1. Determine if the database is enabled.

2. Determine if the database is corrupted. If it is, ask
your database adminstrator to recover it from a
backup.

DXXA005I Enabling database <database>. Please
wait.

Explanation: This is an informational message.

User Response: No action required.

DXXA006I The database <database> was enabled
successfully.

Explanation: This is an informational message.

User Response: No action required.

DXXA007E Cannot disable database <database>.

Explanation: The database cannot be disabled by
XML Extender if it contains any XML columns or
collections.

User Response: Backup any important data, disable
any XML columns or collections, and update or drop
any tables until there are no XML data types left in the
database.

DXXA008I Disabling column <column_name>.
Please Wait.

Explanation: This is an information message.

User Response: No action required.

DXXA009E Xcolumn tag is not specified in the
DAD file.

Explanation: This stored procedure is for XML
Column only.

User Response: Ensure the Xcolumn tag is specified
correctly in the DAD file.

DXXA010E Attempt to find DTD ID <dtdid> failed.

Explanation: While attempting to enable the column,
the XML Extender could not find the DTD ID, which is
the identifier specified for the DTD in the document
access definition (DAD) file.

User Response: Ensure the correct value for the DTD
ID is specified in the DAD file.

Chapter 15. Troubleshooting 221

DXXA011E Inserting a record into
DB2XML.XML_USAGE table failed.

Explanation: While attempting to enable the column,
the XML Extender could not insert a record into the
DB2XML.XML_USAGE table.

User Response: Ensure the DB2XML.XML_USAGE
table exists and that a record by the same name does
not already exist in the table.

DXXA012E Attempt to update DB2XML.DTD_REF
table failed.

Explanation: While attempting to enable the column,
the XML Extender could not update the
DB2XML.DTD_REF table.

User Response: Ensure the DB2XML.DTD_REF table
exists. Determine whether the table is corrupted or if the
administration user ID has the correct authority to
update the table.

DXXA013E Attempt to alter table <table_name>
failed.

Explanation: While attempting to enable the column,
the XML Extender could not alter the specified table.

User Response: Check the privileges required to alter
the table.

DXXA014E The specified root ID column: <root_id>
is not a single primary key of table
<table_name>.

Explanation: The root ID specified is either not a key,
or it is not a single key of table table_name.

User Response: Ensure the specified root ID is the
single primary key of the table.

DXXA015E The column DXXROOT_ID already
exists in table <table_name>.

Explanation: The column DXXROOT_ID exists, but
was not created by XML Extender.

User Response: Specify a primary column for the root
ID option when enabling a column, using a different
different column name.

DXXA016E The input table <table_name> does not
exist.

Explanation: The XML Extender was unable to find
the specified table in the system catalog.

User Response: Ensure that the table exists in the
database, and is specified correctly.

DXXA017E The input column <column_name> does
not exist in the specified table
<table_name>.

Explanation: The XML Extender was unable to find
the column in the system catalog.

User Response: Ensure the column exists in a user
table.

DXXA018E The specified column is not enabled
for XML data.

Explanation: While attempting to disable the column,
XML Extender could not find the column in the
DB2XML.XML_USAGE table, indicating that the column
is not enabled. If the column is not XML-enabled, you
do not need to disable it.

User Response: No action required.

DXXA019E A input parameter required to enable
the column is null.

Explanation: A required input parameter for the
enable_column() stored procedure is null.

User Response: Check all the input parameters for
the enable_column() stored procedure.

DXXA020E Columns cannot be found in the table
<table_name>.

Explanation: While attempting to create the default
view, the XML Extender could not find columns in the
specified table.

User Response: Ensure the column and table name
are specified correctly.

DXXA021E Cannot create the default view
<default_view>.

Explanation: While attempting to enable a column, the
XML Extender could not create the specified view.

User Response: Ensure that the default view name is
unique. If a view with the name already exists, specify a
unique name for the default view.

DXXA022I Column <column_name> enabled.

Explanation: This is an informational message.

User Response: No response required.

DXXA023E Cannot find the DAD file.

Explanation: While attempting to disable a column,
the XML Extender was unable to find the document
access definition (DAD) file.

User Response: Ensure you specified the correct
database name, table name, or column name.

222 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

DXXA024E The XML Extender encountered an
internal error while accessing the
system catalog tables.

Explanation: The XML Extender was unable to
access system catalog table.

User Response: Ensure the database is in a stable
state.

DXXA025E Cannot drop the default view
<default_view>.

Explanation: While attempting to disable a column,
the XML Extender could not drop the default view.

User Response: Ensure the administration user ID for
XML Extender has the privileges necessary to drop the
default view.

DXXA026E Unable to drop the side table
<side_table>.

Explanation: While attempting to disable a column,
the XML Extender was unable to drop the specified
table.

User Response: Ensure that the administrator user ID
for XML Extender has the privileges necessary to drop
the table.

DXXA027E Could not disable the column.

Explanation: XML Extender could not disable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA028E Could not disable the column.

Explanation: XML Extender could not disable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA029E Could not disable the column.

Explanation: XML Extender could not disable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA030E Could not disable the column.

Explanation: XML Extender could not disable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA031E Unable to reset the DXXROOT_ID
column value in the application table
to NULL.

Explanation: While attempting to disable a column,
the XML Extender was unable to set the value of
DXXROOT_ID in the application table to NULL.

User Response: Ensure that the administrator user ID
for XML Extender has the privileges necessary to alter
the application table.

DXXA032E Decrement of USAGE_COUNT in
DB2XML.XML_USAGE table failed.

Explanation: While attempting to disable the column,
the XML Extender was unable to reduce the value of
the USAGE_COUNT column by one.

User Response: Ensure that the
DB2XML.XML_USAGE table exists and that the
administrator user ID for XML Extender has the
necessary privileges to update the table.

DXXA033E Attempt to delete a row from the
DB2XML.XML_USAGE table failed.

Explanation: While attempting to disable a column,
the XML Extender was unable to delete its associate
row in the DB2XML.XML_USAGE table.

User Response: Ensure that the
DB2XML.XML_USAGE table exists and that the
administration user ID for XML Extender has the
privileges necessary to update this table.

DXXA034I XML Extender has successfully
disabled column <column_name>.

Explanation: This is an informational message

User Response: No action required.

DXXA035I XML Extender is disabling database
<database>. Please wait.

Explanation: This is an informational message.

User Response: No action is required.

Chapter 15. Troubleshooting 223

DXXA036I XML Extender has successfully
disabled database <database>.

Explanation: This is an informational message.

User Response: No action is required.

DXXA037E The specified table space name is
longer than 18 characters.

Explanation: The table space name cannot be longer
than 18 alphanumeric characters.

User Response: Specify a name less than 18
characters.

DXXA038E The specified default view name is
longer than 18 characters.

Explanation: The default view name cannot be longer
than 18 alphanumeric characters.

User Response: Specify a name less than 18
characters.

DXXA039E The specified ROOT_ID name is longer
than 18 characters.

Explanation: The ROOT_ID name cannot be longer
than 18 alphanumeric characters.

User Response: Specify a name less than 18
characters.

DXXA046E Unable to create the side table
<side_table>.

Explanation: While attempting to enable a column, the
XML Extender was unable to create the specified side
table.

User Response: Ensure that the administrator user ID
for XML Extender has the privileges necessary to create
the side table.

DXXA047E Could not enable the column.

Explanation: XML Extender could not enable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA048E Could not enable the column.

Explanation: XML Extender could not enable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem

persists, contact your Software Service Provider and
provide the trace file.

DXXA049E Could not enable the column.

Explanation: XML Extender could not enable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA050E Could not enable the column.

Explanation: XML Extender could not enable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA051E Could not disable the column.

Explanation: XML Extender could not disable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA052E Could not disable the column.

Explanation: XML Extender could not disable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA053E Could not enable the column.

Explanation: XML Extender could not enable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

224 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

DXXA054E Could not enable the column.

Explanation: XML Extender could not enable a
column because an internal trigger failed. Possible
causes:

User Response: Use the trace facility to create a
trace file and try to correct the problem. If the problem
persists, contact your Software Service Provider and
provide the trace file.

DXXA056E The validation value <validation_value>
in the DAD file is invalid.

Explanation: The validation element in document
access definition (DAD) file is wrong or missing.

User Response: Ensure that the validation element is
specified correctly in the DAD file.

DXXA057E A side table name <side_table_name> in
DAD is invalid.

Explanation: The name attribute of a side table in the
document access definition (DAD) file is wrong or
missing.

User Response: Ensure that the name attribute of a
side table is specified correctly in the DAD file.

DXXA058E A column name <column_name> in the
DAD file is invalid.

Explanation: The name attribute of a column in the
document access definition (DAD) file is wrong or
missing.

User Response: Ensure that the name attribute of a
column is specified correctly in the DAD file.

DXXA059E The type <column_type> of column
<column_name> in the DAD file is
invalid.

Explanation: The type attribute of a column in the
document access definition (DAD) file is wrong or
missing.

User Response: Ensure that the type attribute of a
column is specified correctly in the DAD file.

DXXA060E The path attribute <location_path> of
<column_name> in the DAD file is
invalid.

Explanation: The path attribute of a column in the
document access definition (DAD) file is wrong or
missing.

User Response: Ensure that the path attribute of a
column is specified correctly in the DAD file.

DXXA061E The multi_occurrence attribute
<multi_occurrence> of <column_name>
in the DAD file is invalid.

Explanation: The multi_occurrence attribute of a
column in the document access definition (DAD) file is
wrong or missing.

User Response: Ensure that the multi_occurrence
attribute of a column is specified correctly in the DAD
file.

DXXA062E Unable to retrieve the column number
for <column_name> in table
<table_name>.

Explanation: XML Extender could not retrieve the
column number for column_name in table table_name
from the system catalog.

User Response: Make sure the application table is
well defined.

DXXA063I Enabling collection <collection_name>.
Please Wait.

Explanation: This is an information message.

User Response: No action required.

DXXA064I Disabling collection <collection_name>.
Please Wait.

Explanation: This is an information message.

User Response: No action required.

DXXA065E Calling stored procedure
<procedure_name> failed.

Explanation: Check the shared library db2xml and
see if the permission is correct.

User Response: Make sure the client has permission
to run the stored procedure.

DXXA066I XML Extender has successfully
disabled collection <collection_name>.

Explanation: This is an informational message.

User Response: No response required.

DXXA067I XML Extender has successfully
enabled collection <collection_name>.

Explanation: This is an informational message.

User Response: No response required.

Chapter 15. Troubleshooting 225

DXXA068I XML Extender has successfully turned
the trace on.

Explanation: This is an informational message.

User Response: No response required.

DXXA069I XML Extender has successfully turned
the trace off.

Explanation: This is an informational message.

User Response: No response required.

DXXA070W The database has already been
enabled.

Explanation: The enable database command was
executed on the enabled database

User Response: No action is required.

DXXA071W The database has already been
disabled.

Explanation: The disable database command was
executed on the disabled database

User Response: No action is required.

DXXA072E XML Extender couldn’t find the bind
files. Bind the database before
enabling it.

Explanation: XML Extender tried to automatically bind
the database before enabling it, but could not find the
bind files

User Response: Bind the database before enabling it.

DXXA073E The database is not bound. Please
bind the database before enabling it.

Explanation: The database was not bound when user
tried to enable it.

User Response: Bind the database before enabling it.

DXXA074E Wrong parameter type. The stored
procedure expects a STRING
parameter.

Explanation: The stored procedure expects a STRING
parameter.

User Response: Declare the input parameter to be
STRING type.

DXXA075E Wrong parameter type. The input
parameter should be a LONG type.

Explanation: The stored procedure expects the input
parameter to be a LONG type.

User Response: Declare the input parameter to be a
LONG type.

DXXA076E XML Extender trace instance ID invalid.

Explanation: Cannot start trace with the instance ID
provided.

User Response: Ensure that the instance ID is a valid
AS/400 user ID.

DXXC000E Unable to open the specified file.

Explanation: The XML Extender is unable to open the
specified file.

User Response: Ensure that the application user ID
has read and write permission for the file.

DXXC001E The specified file is not found.

Explanation: The XML Extender could not find the file
specified.

User Response: Ensure that the file exists and the
path is specified correctly.

DXXC002E Unable to read file.

Explanation: The XML Extender is unable to read
data from the specified file.

User Response: Ensure that the application user ID
has read permission for the file.

DXXC003E Unable to write to the specified file.

Explanation: The XML Extender is unable to write
data to the file.

User Response: Ensure that the application user ID
has write permission for the file or that the file system
has sufficient space.

DXXC004E Unable to operate the LOB Locator:
rc=<locator_rc>.

Explanation: The XML Extender was unable to
operate the specified locator.

User Response: Ensure the LOB Locator is set
correctly.

DXXC005E Input file size is greater than
XMLVarchar size.

Explanation: The file size is greater than the
XMLVarchar size and the XML Extender is unable to
import all the data from the file.

User Response: Use the XMLCLOB column type.

226 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

DXXC006E The input file exceeds the DB2 LOB
limit.

Explanation: The file size is greater than the size of
the XMLCLOB and the XML Extender is unable to
import all the data from the file.

User Response: Decompose the file into smaller
objects or use an XML collection.

DXXC007E Unable to retrieve data from the file to
the LOB Locator.

Explanation: The number of bytes in the LOB Locator
does not equal the file size.

User Response: Ensure the LOB Locator is set
correctly.

DXXC008E Can not remove the file <file_name>.

Explanation: The file has a sharing access violation or
is still open.

User Response: Close the file or stop any processes
that are holding the file. You might have to stop and
restart DB2.

DXXC009E Unable to create file to <directory>
directory.

Explanation: The XML Extender is unable to create a
file in directory directory.

User Response: Ensure that the directory exists, that
the application user ID has write permission for the
directory, and that the file system has sufficient space
for the file.

DXXC010E Error while writing to file <file_name>.

Explanation: There was an error while writing to the
file file_name.

User Response: Ensure that the file system has
sufficient space for the file.

DXXC011E Unable to write to the trace control file.

Explanation: The XML Extender is unable to write
data to the trace control file.

User Response: Ensure that the application user ID
has write permission for the file or that the file system
has sufficient space.

DXXC012E Cannot create temporary file.

Explanation: Cannot create file in system temp
directory.

User Response: Ensure that the application user ID
has write permission for the file system temp directory
or that the file system has sufficient space for the file.

DXXD000E An invalid XML document is rejected.

Explanation: There was an attempt to store an invalid
document into a table. Validation has failed.

User Response: Check the document with its DTD
using an editor that can view invisible invalid characters.
To suppress this error, turn off validation in the DAD file.

DXXD001E <location_path> occurs multiple times.

Explanation: A scalar extraction function used a
location path that occurs multiple times. A scalar
function can only use a location path that does not have
multiple occurence.

User Response: Use a table function (add an ’s’ to
the end of the scalar function name).

DXXD002E A syntax error occurred near position
<position> in the search path.

Explanation: The path expression is syntactically
incorrect.

User Response: Correct the search path argument of
the query. Refer to the documentation for the syntax of
path expressions.

DXXD003W Path not found. Null is returned.

Explanation: The element or attribute specified in the
path expression is missing from the XML document.

User Response: Verify that the specified path is
correct.

DXXG000E The file name <file_name> is invalid.

Explanation: An invalid file name was specified.

User Response: Specify a correct file name and try
again.

DXXG001E An internal error occured in build
<build_ID>, file <file_name>, and line
<line_number>.

Explanation: XML Extender encountered an internal
error.

User Response: Contact your Software Service
Provider. When reporting the error, be sure to include all
the messages, the trace file and how to reproduce the
error.

DXXG002E The system is out of memory.

Explanation: The XML Extender was unable to
allocate memory from the operating system.

User Response: Close some applications and try
again. If the problem persists, refer to your operating
system documentation for assistance. Some operating

Chapter 15. Troubleshooting 227

systems might require that you reboot the system to
correct the problem.

DXXG004E Invalid null parameter.

Explanation: A null value for a required parameter
was passed to an XML stored procedure.

User Response: Check all required parameters in the
argument list for the stored procedure call.

DXXG005E Parameter not supported.

Explanation: This parameter is not supported in this
release, will be supported in the future release.

User Response: Set this parameter to NULL.

DXXG006E Internal Error CLISTATE=<clistate>,
RC=<cli_rc>, build <build_ID>, file
<file_name>, line <line_number>
CLIMSG=<CLI_msg>.

Explanation: XML Extender encountered an internal
error while using CLI.

User Response: Contact your Software Service
Provider. Potentially this error can be caused by
incorrect user input. When reporting the error, be sure
to include all output messages, trace log, and how to
reproduce the problem. Where possible, send any
DADs, XML documents, and table definitions which
apply.

DXXG007E Locale <locale> is inconsistent with
DB2 code page <code_page>.

Explanation: The server operating system locale is
inconsistent with DB2 code page.

User Response: Correct the server operating system
locale and restart DB2.

DXXG008E Locale <locale> is not supported.

Explanation: The server operating system locale can
not be found in the code page table.

User Response: Correct the server operating system
locale and restart DB2.

DXXQ000E <Element> is missing from the DAD
file.

Explanation: A mandatory element is missing from the
document access definition (DAD) file.

User Response: Add the missing element to the DAD
file.

DXXQ001E Invalid SQL statment for XML
generation.

Explanation: The SQL statment in the document
access definition (DAD) or the one that overrides it is
not valid. A SELECT statement is required for
generating XML documents.

User Response: Correct the SQL statment.

DXXQ002E Cannot generate storage space to hold
XML documents.

Explanation: The system is running out of space in
memory or disk. There is no space to contain the
resulting XML documents.

User Response: Limit the number of documents to be
generated. Reduce the size of each documents by
removing some unnecessary element and attribute
nodes from the document access definition (DAD) file.

DXXQ003W Result exceeds maximum.

Explanation: The user-defined SQL query generates
more XML documents than the specified maximum.
Only the specified number of documents are returned.

User Response: No action is required. If all
documents are needed, specify zero as the maximum
number of documents.

DXXQ004E The column <column_name> is not in
the result of the query.

Explanation: The specified column is not one of the
columns in the result of the SQL query.

User Response: Change the specified column name
in the document access definition (DAD) file to make it
one of the columns in the result of the SQL query.
Alternatively, change the SQL query so that it has the
specified column in its result.

DXXQ004W The DTD ID was not found in the DAD.

Explanation: In the DAD, VALIDATION is YES but the
DTDID element is not specified. NO validation check is
performed.

User Response: No action is required. If validation is
needed, specify the DTDID element in the DAD file.

DXXQ005E Wrong relational mapping. The element
<element_name> is at a lower level than
its child column <column_name>.

Explanation: The mapping of the SQL query to XML
is incorrect.

User Response: Make sure that the columns in the
result of the SQL query are in a top-down order of the
relational hierarchy. Also make sure that there is a

228 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

single-column candidate key to begin each level. If such
a key is not available in a table, the query should
generate one for that table using a table expression and
the DB2 built-in function generate_unique().

DXXQ006E An attribute_node element has no
name.

Explanation: An attribute_node element in the
document access definition(DAD) file does not have a
name attribute.

User Response: Ensure that every attribute_node has
a name in the DAD file.

DXXQ007E The attribute_node <attribute_name>
has no column element or RDB_node.

Explanation: The attribute_node element in the
document access definition (DAD) does not have a
column element or RDB_node.

User Response: Ensure that every attribute_node has
a column element or RDB_node in the DAD.

DXXQ008E A text_node element has no column
element.

Explanation: A text_node element in the document
access definition (DAD) file does not have a column
element.

User Response: Ensure that every text_node has a
column element in the DAD.

DXXQ009E Result table <table_name> does not
exist.

Explanation: The specified result table could not be
found in the system catalog.

User Response: Create the result table before calling
the stored procedure.

DXXQ010E RDB_node of <node_name> does not
have a table in the DAD file.

Explanation: The RDB_node of the attribute_node or
text_node must have a table.

User Response: Specify the table of RDB_node for
attribute_node or text_node in the document access
definition (DAD) file.

DXXQ011E RDB_node element of <node_name>
does not have a column in the DAD
file.

Explanation: The RDB_node of the attribute_node or
text_node must have a column.

User Response: Specify the column of RDB_node for

attribute_node or text_node in the document access
definition (DAD) file.

DXXQ012E Errors occurred in DAD.

Explanation: XML Extender could not find the
expected element while processing the DAD.

User Response: Check that the DAD is a valid XML
document and contains all the elements required by the
DAD DTD. Consult the XML Extender publication for the
DAD DTD.

DXXQ013E The table or column element does not
have a name in the DAD file.

Explanation: The element table or column must have
a name in the document access definition (DAD) file.

User Response: Specify the name of table or column
element in the DAD.

DXXQ014E An element_node element has no
name.

Explanation: An element_node element in the
document access definition (DAD) file does not have a
name attribute.

User Response: Ensure that every element_node
element has a name in the DAD file.

DXXQ015E The condition format is invalid.

Explanation: The condition in the condition element in
the document access definition (DAD) has an invalid
format.

User Response: Ensure that the format of the
condition is valid.

DXXQ016E The table name in this RDB_node is
not defined in the top element of the
DAD file.

Explanation: All tables must be defined in the
RDB_node of the top element in the document access
definition (DAD) file. Sub-element tables must match the
tables defined in the top element. The table name in
this RDB_node is not in the top element.

User Response: Ensure that the table of the RDB
node is defined in the top element of the DAD file.

DXXQ017E The column in the result table
<table_name> is too small.

Explanation: An XML document generated by the
XML Extender is too large to fit into the column of the
result table.

User Response: Drop the result table. Create another

Chapter 15. Troubleshooting 229

result table with a bigger column. Rerun the stored
procedure.

DXXQ018E The ORDER BY clause is missing from
the SQL statement.

Explanation: The ORDER BY clause is missing from
the SQL statement in a document access definition
(DAD) file that maps SQL to XML.

User Response: Edit the DAD file. Add an ORDER
BY clause that contains the entity-identifying columns.

DXXQ019E The element objids has no column
element in the DAD file.

Explanation: The objids element does not have a
column element in the document access definition
(DAD) file that maps SQL to XML.

User Response: Edit the DAD file. Add the key
columns as sub-elements of the element objids.

DXXQ020I XML successfully generated.

Explanation: The requested XML documents have
been successfully generated from the database.

User Response: No action is required.

DXXQ021E Table <table_name> does not have
column <column_name>.

Explanation: The table does not have the specified
column in the database.

User Response: Specify another column name in
DAD or add the specified column into the table
database.

DXXQ022E Column <column_name> of
<table_name> should have type
<type_name>.

Explanation: The type of the column is wrong.

User Response: Correct the type of the column in the
document access definition (DAD).

DXXQ023E Column <column_name> of
<table_name> cannot be longer than
<length>.

Explanation: The length defined for the column in the
DAD is too long.

User Response: Correct the column length in the
document access definition (DAD).

DXXQ024E Can not create table <table_name>.

Explanation: The specified table can not be created.

User Response: Ensure that the user ID creating the
table has the necessary authority to create a table in
the database.

DXXQ025I XML decomposed successfully.

Explanation: An XML document has been
decomposed and stored in a collection successfully.

User Response: No action is required.

DXXQ026E XML data <xml_name> is too large to fit
in column <column_name>.

Explanation: The specified piece of data from an XML
document is too large to fit into the specified column.

User Response: Increase the length of the column
using the ALTER TABLE statement or reduce the size of
the data by editing the XML document.

DXXQ028E Cannot find the collection
<collection_name> in the XML_USAGE
table.

Explanation: A record for the collection cannot be
found in the XML_USAGE table.

User Response: Verify that you have enabled the
collection.

DXXQ029E Cannot find the DAD in XML_USAGE
table for the collection
<collection_name>.

Explanation: A DAD record for the collection cannot
be found in the XML_USAGE table.

User Response: Ensure that you have enabled the
collection correctly.

DXXQ030E Wrong XML override syntax.

Explanation: The XML_override value is specified
incorrectly in the stored procedure.

User Response: Ensure that the syntax of
XML_override is correct.

DXXQ031E Table name cannot be longer than
maximum length allowed by DB2.

Explanation: The table name specified by the
condition element in the DAD is too long.

User Response: Correct the length of the table name
in document access definition (DAD).

230 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

DXXQ032E Column name cannot be longer than
maximum length allowed by DB2.

Explanation: The column name specified by the
condition element in the DAD is too long.

User Response: Correct the length of the column
name in the document access definition (DAD).

DXXQ033E Invalid identifier starting at <identifier>

Explanation: The string is not a valid DB2 SQL
identifier.

User Response: Correct the string in the DAD to
conform to the rules for DB2 SQL identifiers.

DXXQ034E Invalid condition element in top
RDB_node of DAD: <condition>

Explanation: The condition element must be a valid
WHERE clause consisting of join conditions connected
by the conjunction AND.

User Response: See the XML Extender
documentation for the correct syntax of the join
condition in a DAD.

DXXQ035E Invalid join condition in top RDB_node
of DAD: <condition>

Explanation: Column names in the condition element
of the top RDB_node must be qualified with the table
name if the DAD specifies multiple tables.

User Response: See the XML Extender
documentation for the correct syntax of the join
condition in a DAD.

DXXQ036E A Schema name specified under a DAD
condition tag is longer than allowed.

Explanation: An error was detected while parsing text
under a condition tag within the DAD. The condition text
contains an id qualified by a schema name that is too
long.

User Response: Correct the text of the condition tags
in document access definition (DAD).

DXXQ037E Cannot generate <element> with
multiple occurrences.

Explanation: The element node and its descandents
have no mapping to database, but its multi_occurrence
equals YES.

User Response: Correct the DAD by either setting the
multi_occurrence to NO or create a RDB_node in one of
its descandents.

Chapter 15. Troubleshooting 231

Tracing
The XML Extender includes a trace facility that records XML Extender server
activity. The trace file is not limited in size and can impact performance.

The trace facility records information in a server file about a variety of events, such
as entry to or exit from an XML Extender component or the return of an error code
by an XML Extender component. Because it records information for many events,
the trace facility should be used only when necessary, for example, when you are
investigating error conditions. In addition, you should limit the number of active
applications when using the trace facility. Limiting the number of active applications
can make isolating the cause of a problem easier.

Use the DXXTRC command at an OS/390 and z/OS server to start or stop tracing.
You can issue the command from the USS command line, from TSO, or from JCL.
You must have SYSADM, SYSCTRL, or SYSMINT authority to issue the command.

232 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|
|

Starting the trace

Purpose
Records the XML Extender server activity. To start the trace, apply the on option to
DXXTRC, along with the name of an existing dirctory to contain the trace file. When
the trace is turned on, the file, dxxDB2.trc, is placed in the specified directory. The
trace file is not limited in size.

Format

Starting the trace from the USS command line:

�� dxxtrc on trace_directory �

Starting the trace from TSO:
call 'dxx.load(dxxtrc)' 'on "trace_directory"' asis

Starting the trace from JCL:
//STEP EXEC PGM=DXXTRC,
// PARM='on "trace_directory"'

Parameters
Table 61. Trace parameters

Parameter Description

trace_directory Name of an existing USS path and directory
where the dxxdb2.trc is placed. Required, no
default.

Examples
The following examples show starting the trace, with file, dxxdb2.trc, in the
/u/user1/dxx/trace directory.
From USS:

dxxtrc on /u/user1/trace
From TSO:

call 'dxx.load(dxxtrc)' 'on "/u/user1/dxx/trace"' asis
From JCL:

//STEP EXEC PGM=DXXTRC,
// PARM='on "/u/user1/dxx/trace"'

Chapter 15. Troubleshooting 233

Stopping the trace

Purpose
Turns the trace off. Trace information is no longer logged. Because running the
trace log file size is not limited and can impact performance, it is recommended to
turn trace off in a production environment.

Format

Stopping the trace from the USS command line:

�� dxxtrc off �

Stopping the trace from TSO:
call 'dxx.load(dxxtrc)' 'off' asis

Stopping the trace from JCL:
//STEP EXEC PGM=DXXTRC,
// PARM='off'

Examples
The following examples demonstrate stopping the trace.

From USS:
dxxtrc off

From TSO:
call 'dxx.load(dxxtrc)' 'off' asis

From JCL:
//STEP EXEC PGM=DXXTRC,
// PARM='off'

234 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Part 5. Appendixes

© Copyright IBM Corp. 2000, 2001 235

236 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Appendix A. DTD for the DAD file

This section describes the document type declarations (DTD) for the document
access definition (DAD) file. The DAD file itself is a tree-structured XML document
and requires a DTD. The DTD file name is dxxdad.dtd. Figure 12 shows the DTD
for the DAD file. The elements of this file are described following the figure.

<?xml encoding="US-ASCII"?>

<!ELEMENT DAD (dtdid?, validation, (Xcolumn | Xcollection))>
<!ELEMENT dtdid (#PCDATA)>
<!ELEMENT validation (#PCDATA)>
<!ELEMENT Xcolumn (table*)>
<!ELEMENT table (column*)>
<!ATTLIST table name CDATA #REQUIRED

key CDATA #IMPLIED
orderBy CDATA #IMPLIED>

<!ELEMENT column EMPTY>
<!ATTLIST column

name CDATA #REQUIRED
type CDATA #IMPLIED
path CDATA #IMPLIED
multi_occurrence CDATA #IMPLIED>

<!ELEMENT Xcollection (SQL_stmt?, objids?, prolog, doctype, root_node)>
<!ELEMENT SQL_stmt (#PCDATA)>
<!ELEMENT objids (column+)>
<!ELEMENT prolog (#PCDATA)>
<!ELEMENT doctype (#PCDATA | RDB_node)*>
<!ELEMENT root_node (element_node)>
<!ELEMENT element_node (RDB_node*,

attribute_node*,
text_node?,
element_node*,
namespace_node*,
process_instruction_node*,
comment_node*)>

<!ATTLIST element_node
name CDATA #REQUIRED
ID CDATA #IMPLIED
multi_occurrence CDATA "NO"
BASE_URI CDATA #IMPLIED>

<!ELEMENT attribute_node (column | RDB_node)>
<!ATTLIST attribute_node

name CDATA #REQUIRED>
<!ELEMENT text_node (column | RDB_node)>
<!ELEMENT RDB_node (table+, column?, condition?)>
<!ELEMENT condition (#PCDATA)>
<!ELEMENT comment_node (#PCDATA)>
<!ELEMENT namespace_node (EMPTY)>
<!ATTLIST namespace_node

name CDATA #IMPLIED
value CDATA #IMPLIED>

<!ELEMENT process_instruction_node (#PCDATA)>

Figure 12. The DTD for the document access definition (DAD)

© Copyright IBM Corp. 2000, 2001 237

The DAD file has four major elements:

v DTDID

v validation

v Xcolumn

v Xcollection

Xcolumn and Xcollection have child element and attributes that aid in the mapping
of XML data to relational tables in DB2. The following list describes the major
elements and their child elements and attributes. Syntax examples are taken from
Figure 12 on page 237.

DTDID element
Specifies the ID of the DTD stored in the DTD_REF table. The DTDID points
to the DTD that validates the XML documents or guides the mapping
between XML collection tables and XML documents. DTDID is optional in
DADs for XML columns and XML collections. For XML collection, this
element is required for validating input and output XML documents. For
XML columns, it is only needed to validate input XML documents. DTDID
must be the same as the SYSTEM ID specified in the doctype of the XML
documents.

Syntax: <!ELEMENT dtdid (#PCDATA)>

validation element
Indicates whether or not the XML document is to be validated with the DTD
for the DAD. If YES is specified, then the DTDID must also be specified.

Syntax: <!ELEMENT validation(#PCDATA)>

Xcolumn element
Defines the indexing scheme for an XML column. It is composed of zero or
more tables.

Syntax: <!ELEMENT Xcolumn (table*)>Xcolumn has one child element,
table.

table element
Defines one or more relational tables created for indexing elements or
attributes of documents stored in an XML column.

Syntax:
<!ELEMENT table (column+)>
<!ATTLIST table name CDATA #REQUIRED
key CDATA #IMPLIED
orderBy CDATA #IMPLIED>

The table element has one attribute:

name attribute
Specifies the name of the side table

The table element has one child element:

key attribute
The primary single key of the table

orderBy attribute
The names of the columns that determine the sequence order of
multiple-occurring element text or attribute values when generating XML
documents.

238 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

column element
Specifies the column of the table that contains the value of a location path
of the specified type.

Syntax:
<!ATTLIST column

name CDATA #REQUIRED
type CDATA #IMPLIED
path CDATA #IMPLIED
multi_occurrence CDATA #IMPLIED>

The column element has the following attributes:

name attribute
Specifies the name of the column. It is the alias name of the
location path which identifies an element or attribute

type attribute
Defines the data type of the column. It can be any SQL data type.

path attribute
Shows the location path of an XML element or attribute and must
be the simple location path as specified in Table 3.1.a (fix link) .

multi_occurrence attribute
Specifies whether this element or attribute can occur more than
once in an XML document. Values can be YES or NO.

Xcollection
Defines the mapping between XML documents and an XML collection of
relational tables.

Syntax: <!ELEMENT Xcollection(SQL_stmt*, prolog, doctype,
root_node)>Xcollection has the following child elements:

SQL_stmt
Specifies the SQL statement that the XML Extender uses to define
the collection. Specifically, the statement selects XML data from the
XML collection tables, and uses the data to generate the XML
documents in the collection. The value of this element must be a
valid SQL statement. It is only used for composition, and only a
single SQL_stmt is allowed. For decomposition, more than one value
for SQL_stmt can be specified to perform the necessary table
creation and insertion.

Syntax: <!ELEMENT SQL_stmt #PCDATA >

prolog
The text for the XML prolog. The same prolog is supplied to all
documents in the entire collection. The value of prolog is fixed.

Syntax: <!ELEMENT prolog #PCDATA>

doctype
Defines the text for the XML document type definition.

Syntax: <!ELEMENT doctype #PCDATA | RDB_node>doctype can be
specified in one of the following ways:

v Define an explicit value. This value is supplied to all documents
in the entire collection.

v When using decomposition, specify the child element, RDB_node,
that can be mapped to and stored as column data of a table.

Appendix A. DTD for the DAD file 239

doctype has one child element:

RDB_node
Defines the DB2 table where the content of an XML element or
value of an XML attribute is to be stored or from where it will be
retrieved. The RDB_node has the following child elements:

table Specifies the table in which the element or attribute content
is stored.

column
Specifies the column in which the element or attribute
content is stored.

condition
Specifies a condition for the column. Optional.

root_node
Defines the virtual root node. root_node must have one required
child element, element_node, which can be used only once. The
element_node under the root_node is actually the root_node of the
XML document.

Syntax: <!ELEMENT root_node(element_node)>

element_node
Represents an XML element. It must be defined in the DTD
specified for the collection. For the RDB_node mapping, the root
element_node must have a RDB_node to specify all tables containing
XML data for itself and all of its child nodes. It can have zero or
more attribute_nodes and child element_nodes, as well as zero or
one text_node. For elements other than the root element no
RDB_node is needed.

Syntax:

An element_node is defined by the following child elements:

RDB_node
(Optional) Specifies tables, column, and conditions for XML
data. The RDB_node for an element only needs to be
defined for the RDB_node mapping. In this case, one or
more tables must be specified. The column is not needed
since the element content is specified by its text_node. The
condition is optional, depending on the DTD and query
condition.

child nodes
(Optional) An element_node can also have the following
child nodes:

element_node
Represents child elements of the current XML
element

attribute_node
Represents attributes of the current XML element

text_node
Represents the CDATA text of the current XML
element

240 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

attribute_node
Represents an XML attribute. It is the node defining the mapping
between an XML attribute and the column data in a relational table.

Syntax:

The attribute_node must have definitions for a name attribute, and
either a column or a RDB_node child element. attribute_node has
the following attribute:

name The name of the attribute.

attribute_node has the following child elements:

Column
Used for the SQL mapping. The column must be specified
in the SELECT clause of SQL_stmt.

RDB_node
Used for the RDB_node mapping. The node defines the
mapping between this attribute and the column data in the
relational table The table and column must be specified.
The condition is optional.

text_node
Represents the text content of an XML element. It is the node
defining the mapping between an XML element content and the
column data in a relational table.

Syntax: It must be defined by a column or an RDB_node child
element:

Column
Needed for the SQL mapping. In this case, the column
must be in the SELECT clause of SQL_stmt.

RDB_node
Needed for the RDB_node mapping. The node defines the
mapping between this text content and the column data in
the relational table. The table and column must be
specified. The condition is optional.

Appendix A. DTD for the DAD file 241

242 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Appendix B. Samples

This appendix shows the sample objects that are used with examples in this book.

v “XML DTD”

v “XML document: getstart.xml” on page 244

v “Document access definition files” on page 244

– “DAD file: XML column” on page 244

– “DAD file: XML collection - SQL mapping” on page 245

– “DAD file: XML - RDB_node mapping” on page 248

XML DTD
The following DTD is used for the getstart.xml document that is referenced
throughout this book and shown in Figure 14 on page 244.

<!xml encoding="US-ASCII"?>

<!ELEMENT Order (Customer, Part+)>
<!ATTLIST Order key CDATA #REQUIRED>
<!ELEMENT Customer (Name, Email)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Part (key,Quantity,ExtendedPrice,Tax, Shipment+)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT ExtendedPrice (#PCDATA)>
<!ELEMENT Tax (#PCDATA)>
<!ATTLIST Part color CDATA #REQUIRED>
<!ELEMENT Shipment (ShipDate, ShipMode)>
<!ELEMENT ShipDate (#PCDATA)>
<!ELEMENT ShipMode (#PCDATA)>

Figure 13. Sample XML DTD: getstart.dtd

© Copyright IBM Corp. 2000, 2001 243

XML document: getstart.xml
The following XML document, getstart.xml, is the sample XML document that is
used in examples throughout this book. It contains XML tags to form a purchase
order.

Document access definition files
The following sections contain document access definition (DAD) files that map
XML data to DB2 relational tables, using either XML column or XML collection
access modes.

v “DAD file: XML column”

v “DAD file: XML collection - SQL mapping” on page 245 shows a DAD file for an
XML collection using SQL mapping.

v “DAD file: XML - RDB_node mapping” on page 248 show a DAD for an XML
collection that uses RDB_node mapping.

DAD file: XML column
This DAD file contains the mapping for an XML column, defining the table, side
tables, and columns that are to contain the XML data.

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "dxx_install/samples/dtd/getstart.dtd">
<Order key="1">
<Customer>
<Name>American Motors</Name>
<Email>parts@am.com</Email>

</Customer>
<Part color="black ">
<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>
<Shipment>
<ShipDate>1998-08-19</ShipDate>
<ShipMode>BOAT </ShipMode>

</Shipment>
<Shipment>

<ShipDate>1998-08-19</ShipDate>
<ShipMode>AIR </ShipMode>

</Shipment>
</Part>
<Part color="red ">
<key>128</key>
<Quantity>28</Quantity>
<ExtendedPrice>38000.00</ExtendedPrice>
<Tax>7.000000e-02</Tax>
<Shipment>
<ShipDate>1998-12-30</ShipDate>
<ShipMode>TRUCK </ShipMode>

</Shipment>
</Part>

</Order>

Figure 14. Sample XML document: getstart.xml

244 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

DAD file: XML collection - SQL mapping
This DAD file contains an SQL statement that specifies the DB2 tables, columns,
and conditions that are to contain the XML data.

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "dxx_install/dad.dtd">
<DAD>

<dtdid>dxx_install/samples/dtd/getstart.dtd</dtdid>
<validation>YES</validation>

<Xcolumn>
<table name="order_side_tab">

<column name="order_key"
type="integer"
path="/Order/@key"
multi_occurrence="NO"/>

<column name="customer"
type="varchar(50)"
path="/Order/Customer/Name"
multi_occurrence="NO"/>

</table>
<table name="part_side_tab">

<column name="price"
type="decimal(10,2)"
path="/Order/Part/ExtendedPrice"
multi_occurrence="YES"/>

</table>
<table name="ship_side_tab">

<column name="date"
type="DATE"
path="/Order/Part/Shipment/ShipDate"
multi_occurrence="YES"/>

</table>

</Xcolumn>

</DAD>

Figure 15. Sample DAD file for an XML column: getstart_xcolumn.dad

Appendix B. Samples 245

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "dxx_install/dtd/dad.dtd">
<DAD>
<validation>NO</validation>
<Xcollection>
<SQL_stmt>SELECT o.order_key, customer_name, customer_email, p.part_key, color, quantity,

price, tax, ship_id, date, mode from order_tab o, part_tab p,
table(select db2xml.generate_unique(),
as ship_id, date, mode, part_key from ship_tab)

s
WHERE o.order_key = 1 and

p.price > 20000 and
p.order_key = o.order_key and
s.part_key = p.part_key

ORDER BY order_key, part_key, ship_id</SQL_stmt>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Order SYSTEM "dxx_install/samples/dtd/getstart.dtd"</doctype>

Figure 16. Sample DAD file for an XML collection using SQL mapping: order_sql.dad (Part 1
of 2)

246 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

<root_node>
<element_node name="Order">
<attribute_node name="key">
<column name="order_key"/>

</attribute_node>
<element_node name="Customer">
<element_node name="Name">
<text_node><column name="customer_name"/></text_node>

</element_node>
<element_node name="Email">
<text_node><column name="customer_email"/></text_node>

</element_node>
</element_node>
<element_node name="Part">
<attribute_node name="color">
<column name="color"/>

</attribute_node>
<element_node name="key">
<text_node><column name="part_key"/></text_node>

</element_node>
<element_node name="Quantity">
<text_node><column name="quantity"/></text_node>

</element_node>
<element_node name="ExtendedPrice">
<text_node><column name="price"/></text_node>

</element_node>
<element_node name="Tax">
<text_node><column name="tax"/></text_node>

</element_node>
<element_node name="Shipment" multi_occurence="YES">
<element_node name="ShipDate">
<text_node><column name="date"/></text_node>

</element_node>
<element_node name="ShipMode">
<text_node><column name="mode"/></text_node>

</element_node>
</element_node>

</element_node>
</element_node>
</root_node>
</Xcollection>
</DAD>

Figure 16. Sample DAD file for an XML collection using SQL mapping: order_sql.dad (Part 2
of 2)

Appendix B. Samples 247

DAD file: XML - RDB_node mapping
This DAD file uses <RDB_node> elements to define the DB2 tables, columns, and
conditions that are to contain XML data.

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "dxx_install/dtd/dad.dtd">
<DAD>

<dtdid>dxx_install/samples/dtd/getstart.dtd</dtdid>
<validation>YES</validation>

<Xcollection>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Order SYSTEM "dxx_install/samples/dtd/getstart.dtd"</doctype>
<root_node>

<element_node name="Order">
<RDB_node>

<table name="order_tab"/>
<table name="part_tab"/>
<table name="ship_tab"/>
<condition>
order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key

</condition>
</RDB_node>
<attribute_node name="key">

<RDB_node>
<table name="order_tab"/>
<column name="order_key"/>

</RDB_node>
</attribute_node>
<element_node name="Customer">

<text_node>
<RDB_node>

<table name="order_tab"/>
<column name="customer"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="Part">

<RDB_node>
<table name="part_tab"/>
<table name="ship_tab"/>
<condition>

part_tab.part_key = ship_tab.part_key
</condition>

</RDB_node>
<attribute_node name="key">

<RDB_node>
<table name="part_tab"/>
<column name="part_key"/>

</RDB_node>
</attribute_node>

Figure 17. Sample DAD file for an XML collection using RDB_node mapping: order_rdb.dad
(Part 1 of 3)

248 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

<element_node name="Quantity">
<text_node>

<RDB_node>
<table name="part_tab"/>
<column name="quantity"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="ExtendedPrice">

<text_node>
<RDB_node>

<table name="part_tab"/>
<column name="price"/>
<condition>

price > 2500.00
</condition>

</RDB_node>
</text_node>

</element_node>
<element_node name="Tax">

<text_node>
<RDB_node>

<table name="part_tab"/>
<column name="tax"/>

</RDB_node>
</text_node>

</element_node>

Figure 17. Sample DAD file for an XML collection using RDB_node mapping: order_rdb.dad
(Part 2 of 3)

Appendix B. Samples 249

<element_node name="shipment">
<RDB_node>

<table name="ship_tab"/>
<condition>

part_key = part_tab.part_key
</condition>

</RDB_node>
<element_node name="ShipDate">

<text_node>
<RDB_node>

<table name="ship_tab"/>
<column name="date"/>
<condition>

date > "1966-01-01"
</condition>

</RDB_node>
</text_node>

</element_node>
<element_node name="ShipMode">

<text_node>
<RDB_node>

<table name="ship_tab"/>
<column name="mode"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="Comment">

<text_node>
<RDB_node>

<table name="ship_tab"/>
<column name="comment"/>

</RDB_node>
</text_node>

</element_node>
</element_node> <! -- end of element Shipment>

</element_node> <! -- end of element Part --->
</element_node> <! -- end of element Order --->

</root_node>
</Xcollection>

</DAD>

Figure 17. Sample DAD file for an XML collection using RDB_node mapping: order_rdb.dad
(Part 3 of 3)

250 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Appendix C. Code page considerations

XML documents and other related files must be encoded properly for each client or
server that accesses the files. The XML Extender makes some assumptions when
processing a file, you need to understand how it handles code page conversions.
The primary considerations are:

v Ensuring that the actual code page of the client retrieving an XML document from
DB2 matches the encoding of the document.

v Ensuring that, when the document is processed by an XML parser, the encoding
declaration of the XML document is also consistent with the document’s actual
encoding.

v Determining how parsers and other tools handle line endings and determining
how to present files so that they are processed.

The following sections describe the issues for these considerations, how you can
prepare for possible problems, and how the XML Extender and DB2 support code
pages when documents are passed from client to server, and to the database.

Terminology
The following terms are used in the section:

document encoding
The code page of an XML document.

document encoding declaration
The name of the code page specified in the XML declaration. For example,
the following encoding declaration specifies ibm-1047:
<?xml version="1.0" encoding="ibm-1047"?>

consistent document
A document in which the code page matches the encoding declaration.

inconsistent document
A document in which the code page does not match the encoding
declaration.

client code page
The application code page. The default client code page is the value of the
operating system locale on a Windows or UNIX client.

server code page, or server operating system locale code page
The operating system locale of the HFS file system on USS, that is in the
same OS/390 system as the XML-enabled database. The XML Extender
uses the nl_langinfo environment option to determine the value of the
server code page.

database code page
The encoding of the stored data, determined at database create time. This
value defaults to the server operating system locale.

DB2 and XML Extender code page assumptions
When DB2 sends or receives an XML document, it does not check the encoding
declaration. Rather, it checks the code page for the client to see if it matches the
database code page. If they are different, DB2 converts the data in the XML
document to match the code page of:

© Copyright IBM Corp. 2000, 2001 251

|
|
|

v The database, when importing the document, or a document fragment, into a
database table.

v The database, when decomposing a document into one or more database tables.

v The client, when exporting the document from the database and presenting the
document to the client.

v The server, when processing a file with a UDF that returns data in a file on the
server’s file system.

Assumptions for importing an XML document
When an XML document is imported into the database, it is generally imported as
an XML document to be stored in an XML column, or for decomposition for an XML
collection, where the element and attribute contents will be saved as DB2 data.
When a document is imported, DB2 converts the document encoding to that of the
database. DB2 assumes that the document is in the code page specified in the
“Source code page” column in the table below. Table 62 on page 253 summarizes
the conversions that DB2 makes when importing an XML document.

252 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Table 62. Using UDFs and stored procedures when the XML file is imported into the
database

If you are... This is the
source code
page for
conversion

This is the
target code
page for
conversion

Comments

Inserting DTD file into
DTD_REF table

Client code
page

Database code
page

Enabling a column or
enabling a collection
with stored procedures,
or using administration
commands that import
DAD files

Client code
page — the
code page
used to bind
DXXADMIN
during
installation,
when enabling
in USS.

Database code
page

Using user-defined
functions:

v XMLVarcharFromFile()

v XMLCLOBFromFile()

v Content(): retrieve
from XMLFILE to a
CLOB

Server code
page

Database code
page

The database code page is
converted to the client code page
when the data is presented to the
client

Using stored procedures
for decomposition

Client code
page

Database code
page

v Document to be decomposed
is assumed to be in client code
page. Data from
decomposition is stored in
tables in database code page

v Use the CCSID option for DAD
and XML files described in
“Consistent encodings in USS”
on page 257, when the calling
application runs in USS.

Assumptions for exporting an XML document
When an XML document is exported from the database, it is exported based on a
client request to present one of the following objects:

v An XML document from an XML column

v The query results of XML documents in an XML column

v A composed XML document from an XML collection

When a document is exported, DB2 converts the document encoding to that of the
client or server, depending on where the request originated and where the data is to
be presented. Table 63 on page 254 summarizes the conversions that DB2 makes
when exporting an XML document.

Appendix C. Code page considerations 253

Table 63. Using UDFs and stored procedures when the XML file is exported from the
database

If you are... DB2 converts the ... Comments

Using user-defined functions:

v XMLFileFromVarchar()

v XMLFileFromCLOB()

v Content(): retrieve from
XMLVARCHAR to an
external server file

Database code page to
server code page

Composing XML documents
with a stored procedure that
are stored in a result table,
which can be queried and
exported.

Database code page to client
code page when result set is
presented to client

v When composing
documents, the XML
Extender copies the
encoding declaration
specified by the tag in the
DAD, to the newly created
document. It should match
the client code page when
presented.

v Use the CCSID option for
DAD files described
in“Consistent encodings in
USS” on page 257, when
the calling application runs
in USS.

Encoding declaration considerations
The encoding declaration specifies the code page of the XML document’s encoding
and appears on the XML declaration statement. When using the XML Extender, it is
important to ensure that the encoding of the document matches the code page of
the client or the server, depending on where the file is located.

Legal encoding declarations
You can use any encoding declaration in XML documents, within some guidelines.
In this section, these guidelines are defined, along with the supported encoding
declarations.

If you use the encodings listed in Table 64, your application can be ported between
IBM operating systems. If you use other encodings, your data is less likely to be
portable.

For all operating systems, the following encoding declarations are supported. The
following list describes the meaning of each column:

v Encoding specifies the encoding string to be used in the XML declaration.

v OS shows the operating system on which DB2 supports the given code page.

v Code page shows the IBM-defined code page associated with the given
encoding

Table 64. Encoding declarations supported by XML Extender

Category Encoding OS Code page

Unicode UTF-8 AIX, SUN, Linux 1208

UTF-16 AIX, SUN, Linux 1200

254 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|
|

Table 64. Encoding declarations supported by XML Extender (continued)

Category Encoding OS Code page

EBCDIC ibm-037 OS/390 and z/OS 37

ibm-273 OS/390 and z/OS 273

ibm-277 OS/390 and z/OS 277

ibm-278 OS/390 and z/OS 278

ibm-280 OS/390 and z/OS 280

ibm-284 OS/390 and z/OS 284

ibm-297 OS/390 and z/OS 297

ibm-500 OS/390 and z/OS 500

ibm-1047 OS/390 and z/OS 1047

ibm-1140 OS/390 and z/OS 1140

ASCII iso-8859-1 AIX, Linux, Sun 819

ibm-1252 Windows NT 1252

iso-8859-2 AIX, Linux, Sun 912

iso-8859-5 AIX, Linux 915

iso-8859-6 AIX 1089

iso-8859-7 AIX, Linux 813

iso-8859-8 AIX, Linux 916

iso-8859-9 AIX, Linux 920

The encoding string must be compatible with the code page of the document’s
destination. If a document is being returned from a server to a client, then its
encoding string must be compatible with the client’s code page. See “Consistent
encodings and encoding declarations” for the consequences of incompatible
encodings. See the following Web address for a list of code pages supported by the
XML parser used by the XML Extender:
http://www.ibm.com/software/data/db2/extenders/xmlext/moreinfo/encoding.html

Consistent encodings and encoding declarations
When an XML document is processed or exchanged with another system, it is
important that the encoding declaration corresponds to the actual encoding of the
document. Ensuring that the encoding of a document is consistent with the client is
important because XML tools, like parsers, generate an error for an entity that
includes an encoding declaration other than that named in the declaration.

Figure 18 on page 256 shows that clients have consistent code pages with the
document encoding and declared encoding.

Appendix C. Code page considerations 255

The consequences of having different code pages are the following possible
situations:

v A conversion in which data is lost might occur, particularly if the source code
page is Unicode and the target code page is not Unicode. Unicode contains the
full set of character conversions. If a file is converted from UTF-8 to a code page
that does not support all the characters used in the document, then data might
be lost during the conversion.

v The declared encoding of the XML document might no longer be consistent with
the actual document encoding, if the document is retrieved by a client with a
different code page than the declared encoding of the document.

Figure 19 on page 257 shows an environment in which the code pages of the
clients are inconsistent.

Figure 18. Clients have matching code pages

256 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Client 2 receives the document in EUC, but the document will have an encoding
declaration of ibm-1252.

Consistent encodings in USS
When running applications in USS, there are two considerations:

v When you enable an XML column or collection, and specify a DAD file that is
stored in HFS, bind the DXXADM package with the ENCODING option and
specify the actual code page of the DAD file. The bind step for DXXADM is
included in the DXXGPREP JCL job. See “Initializing the XML Extender
environment using DXXGPREP” on page 39 to learn what this job does and how
to run it. For example, if the DAD file has a code page of 1047, specify this value
on the ENCODING option:
BIND PACKAGE (DB2XML) MEMBER(DXXADM) ENCODING(1047);

v When DAD files stored in HFS are used in a calling application, declare a host
variable in the calling program with the coded character set identifier (CCSID) of
the actual code page of the DAD file. If the file is created in HFS, the code page
is that of HFS. If the file has been imported into HFS in binary mode, the code
page might be different. This declaration ensures that DB2 converts the DAD
code page, to the database code page. For example, if a DAD file is in 1047, use
the following variable declaration:
EXEC SQL DECLARE :dadobj VARIABLE CCSID 1047;

v When XML files stored in HFS are used in a calling application for
decomposition, declare a host variable in the calling program with the CCSID of
the actual code page of the XML file. If the file is created in HFS, the code page
is that of HFS. If the file has been imported into HFS in binary mode, the code

Figure 19. Clients have mismatching code pages

Appendix C. Code page considerations 257

|

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|

page might be different. This declaration ensures that DB2 converts the XML file
code page, to the database code page. For example, if a DAD file is in 1047, use
the following variable declaration:
EXEC SQL DECLARE :xmlobj VARIABLE CCSID 1047;

Declaring an encoding
The default value of the encoding declaration is UTF-8, and the absence of an
encoding declaration means the document is in UTF-8.

To declare an encoding value:

In the XML document declaration specify the encoding declaration with the name of
the code page of the client. For example:
<?xml version="1.0" encoding="ibm-1047" ?>

Conversion scenarios
The XML Extender processes XML documents when:

v Storing and retrieving XML column data, using the XML column storage and
access method

v Composing and decomposing XML documents

Documents undergo code page conversion when passed from a client or server, to
a database. Inconsistencies or damage of XML documents is most likely to occur
during conversions from code pages of the client, server, and database. When
choosing the encoding declaration of the document, as well as planning what clients
and servers can import or export documents from the database, consider the
conversions described in the above tables, and the scenarios described below.

The following scenarios describe common conversion scenarios that can occur:

Scenario 1: This scenario is a configuration with consistent encodings, no DB2
conversion, and a document imported from the server. The document encoding
declaration is ibm-1047, the server is ibm-1047, and the database is ibm-1047.

1. The document is imported into DB2 using the XMLClobfromFile UDF.

2. The document is extracted to the server.

3. DB2 does not need to convert the document because the server code page and
database code page are identical. The encoding and declaration are consistent.

Scenario 2: This scenario is a configuration with consistent encodings, DB2
conversion, and a document imported from server and exported to client. The
document encoding and declaration is ibm-1047 the client and server code pages
are ibm-1047, and the database code pages are ibm-500.

1. The document is imported into DB2 using XMLClobfromfile UDF from the
server.

2. DB2 converts the document from ibm-1047 and stores it in ibm-500. The
encoding declaration and encoding are inconsistent in the database.

3. A client using ibm-1047 requests the document for presentation at the Web
browser.

4. DB2 converts the document to ibm-1047, the client’s code page. The document
encoding and the declaration are now consistent at the client.

258 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

|
|
|

|

|

Scenario 3: This scenario is a configuration with inconsistent encodings, DB2
conversion, a document imported from the server and exported to a client. The
document encoding declaration is ibm-1047 for the incoming document. The server
code page is ibm-1047 and the client and database are ibm-500.

1. The document is imported into the database using a storage UDF.

2. DB2 converts the document to ibm-500 from ibm-1047. The encoding and
declaration are inconsistent.

3. A client with a ibm-500 code page requests the document for presentation at a
Web browser.

4. DB2 does not convert because the client and the database code pages are the
same.

5. The document encoding and declaration are inconsistent because the
declaration is ibm-1047 and the encoding is ibm-500. The document cannot be
processed by an XML parser or other XML processing tools.

Preventing inconsistent XML documents
The above sections have discussed how an XML document can have an
inconsistent encoding, that is, the encoding declaration conflicts with the
document’s encoding. Inconsistent encodings can cause the lost of data and or
unusable XML documents.

Use one of the following recommendations for ensuring that the XML document
encoding is consistent with the client code page, before handing the document to
an XML processor, such as a parser:

v When exporting a document from the database using the XML Extender UDFs,
try one of the following techniques (assuming the XML Extender has exported the
file, in the server code page, to the file system on the server):

– Convert the document to the declared encoding code page

– Override the declared encoding, if the tool has an override facility

– Manually change the encoding declaration of the exported document to the
document’s actual encoding (that is, the server code page)

v When exporting a document from the database using the XML Extender stored
procedures, try one of the following techniques (assuming the client is querying
the result table, in which the composed document is stored):

– Convert the document to the declared encoding code page

– Override the declared encoding, if the tool has an override facility

– Before running the stored procedure, have the client set the CCSID variable
to force the client code page to a code page that is compatible with the
encoding declaration of the XML document.

– Manually change the encoding declaration of the exported document to the
document’s actual encoding (that is, the client code page)

v Limitation when using Unicode and a Windows NT client: On Windows NT,
the operating system locale cannot be set to UTF-8. Use the following guidelines
when importing or exporting documents:

– When importing files and DTDs encoded in UTF-8, set the client code page to
UTF-8, using:
db2set DB2CODEPAGE=1208

Use this technique when:

- Inserting a DTD into the DB2XML.DTD_REF table

Appendix C. Code page considerations 259

- Enabling a column or collection

- Decomposing stored procedures

– When using the Content() or XMLFromFile UDFs to import XML documents,
documents must be encoded in the code page of the server’s operating
system locale, which cannot be UTF-8.

– When exporting an XML file from the database, set the client code page with
the following command to have DB2 encode the resulting data in UTF-8:
db2set DB2CODEPAGE=1208

Use this technique when:

- Querying the result table after composition

- Extracting data from an XML column using the extract UDFs

– When using the Content() or XMLxxxfromFile UDFs to export XML documents
to files on the server file system, resulting documents are encoded in the code
page of the server’s operating system locale, which cannot be UTF-8.

Line ending considerations
When storing XML and DAD files, consider that the file can be treated inconsistently
by editors and parsers because DB2 for OS/390 and z/OS stores files with the NL
as the line ending. Many tools do not recognize the NL line endings.

DB2 uses the NL line ending because:

v DB2 uses Character Data Representation Architecture (CDRA) as the basis for
data conversions across systems through Distributed Relational Database
Architecture (DRDA). For more information on CDRA, see IBM Character Data
Representation Architecture, Reference and Registry.

v DB2 files are routinely accessed across operating systems

For example, SQL procedures source code, held in the DB2 catalog, is stored with
[LF] as its line ending. In general files or documents can contain the following line
endings: [CR], [CRLF], or [LF], as well as [NL], as in the following example:
This is line 1 of a UNIX document [LF]
This is line 1 of an Apple Macintosh document [CR]
This is line 1 of a DOS/Windows document [CR][LF]
This is line 1 of an OS/390 and z/OS USS file [NL].....

Most workstation tools recognize [LF], [CR], and [CR][LF], but not [NL], which is
used by OS/390 and z/OS. Different line endings can appear together in one
document.

Traditional MVS files rely on either:

v Fixed record length

v Variable record length with a length at the beginning of the record rather than line
ending control characters.

Programs written with the C-runtime and USS or Open Edition (OE) rely on [NL] as
the line ending.

Processing XML documents with the linebrk utility
Use the linebrk utility to convert [NL] line endings [LF} line endings, or the reverse.

Download the utility from the DB2 XML Extender Web site:

260 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

http://www.ibm.com/software/data/db2/extenders/xmlext/download.html

Syntax:

�� linebrk input_file_name output_file_name -nl
-f -v

�

Where:

input_file_name
Specifies the name of the file to be processed.

output_file_name
Specifies the name of the resulting file.

-nl Specifies that the file is to be converted from LF to NL.

-f Specifies that the file is to be converted from NL to LF.

-v Specifies the verbose option, which provides information as the command
processes the file.

Appendix C. Code page considerations 261

262 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Appendix D. The XML Extender limits

This appendix describes the limits for:

v XML Extender objects - Table 65

v values returned by user-defined functions - Table 66

v stored procedures parmeters - Table 67

v administration support table columns - Table 68 on page 264

Table 65 describes the limits for XML Extender objects.

Table 65. Limits for XML Extender objects

Object Limit

Maximum number of rows in a table in a
decomposition XML collection

1024 rows from each decomposed XML
document

Maximum bytes in XMLFile path name
specified as a parameter value

512 bytes

Table 66 describes the limits values returned by XML Extender user-defined
functions.

Table 66. Limits for user-defined function value

User-defined functions returned values Limit

Maximum bytes returned by an extractCHAR
UDF

254 bytes

Maximum bytes returned by an extractCLOB
UDF

2 gigabytes

Maximum bytes returned by an
extractVARCHAR UDF

4 kilobytes

Table 67 describes the limits for parameters of XML Extender stored procedures.

Table 67. Limits for stored procedure parameters

Stored procedure parameters Limit

Maximum size of an XML document CLOB1 1 megabytes

Maximum size of a Document Access
Definition (DAD) CLOB1

100 kilobytes

Maximum size of collectionName 30 bytes

Maximum size of colName 30 bytes

Maximum size of dbName 8 bytes

Maximum size of defaultView 128 bytes

Maximum size of rootID 128 bytes

Maximum size of resultTabName 18 bytes

Maximum size of tablespace 8 bytes

Maximum size of tbName 18 bytes

© Copyright IBM Corp. 2000, 2001 263

Table 67. Limits for stored procedure parameters (continued)

Stored procedure parameters Limit

Notes:

1. This size can be changed. See “Increasing the CLOB limit” on page 190 to learn how.

2. If the value of the tbName parameter is qualified by a schema name, the entire name
(including the separator character) must be no longer than 128 bytes.

Table 68 describes the limits for the DB2XML.DTD_REF table.

Table 68. XML Extender limits

DB2XML.DTD_REF table columns Limit

Size of AUTHOR column 128 bytes

Size of CREATOR column 128 bytes

Size of UPDATOR column 128 bytes

Size of DTDID column 128 bytes

Size of CLOB column 100 kilobytes

Names can undergo expansion when DB2 converts them from the client code page
to the database code page. A name might fit within the size limit at the client, but
exceed the limit when the stored procedure gets the converted name. See the
“National Language Support Application Development” section in the “Programming
in Complex Environments” chapter of the DB2 Universal Database for OS/390 and
z/OS Application Programming and SQL Guide, Version 7 for more information.

264 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Appendix E. Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2000, 2001 265

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

266 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks
The following terms, which may be denoted by an asterisk(*), are trademarks of
International Business Machines Corporation in the United States, other countries,
or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational
Database Architecture

DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other companies:

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of
Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, other
countries, or both.

UNIX is a registered trademark in the United States, other countries or both and is
licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double
asterisk(**) may be trademarks or service marks of others.

Appendix E. Notices 267

268 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Glossary

absolute location path. The full path name of an
object. The absolute path name begins at the highest
level, or ″root″ element, which is identified by the
forward slash (/) or back slash (\) character.

access and storage method. Associates XML
documents to a DB2 database through two major
access and storage methods: XML columns and XML
collections. See also XML column and XML collection.

administrative support tables. A tables used by a
DB2 extender to process user requests on XML objects.
Some administrative support tables identify user tables
and columns that are enabled for an extender. Other
administrative support tables contain attribute
information about objects in enabled columns.
Synonymous with metadata table.

API. See application programming interface.

application programming interface (API).

(1) A functional interface supplied by the operating
system or by a separately orderable licensed
program. An API allows an application program that
is written in a high-level language to use specific
data or functions of the operating system or the
licensed programs.

(2) In DB2, a function within the interface, for
example, the get error message API.

(3) In DB2, a function within the interface. For
example, the get error message API.

attribute. See XML attribute.

attribute_node. A representation of an attribute of an
element.

browser. See Web browser.

B-tree indexing. The native index scheme provided by
the DB2 engine. It builds index entries in the B-tree
structure. Supports DB2 base data types.

cast function. A function that is used to convert
instances of a (source) data type into instances of a
different (target) data type. In general, a cast function
has the name of the target data type. It has one single
argument whose type is the source data type; its return
type is the target data type.

character large object (CLOB). A character string of
single-byte characters, where the string can be up to 2
GB. CLOBs have an associated code page. Text objects
that contain single-byte characters are stored in a DB2
database as CLOBs.

CLOB. Character large object.

column data. The data stored inside of a DB2 column.
The type of data can be any data type supported by
DB2.

compose. To generate XML documents from relational
data in an XML collection.

condition. A specification of either the criteria for
selecting XML data or the way to join the XML collection
tables.

DAD. See Document access definition.

data interchange. The sharing of data between
applications. XML supports data interchange without
needing to go through the process of first transforming
data from a proprietary format.

data source. A local or remote relational or
nonrelational data manager that is capable of
supporting data access via an ODBC driver that
supports the ODBC APIs.

data type. An attribute of columns and literals.

datalink. A DB2 data type that enables logical
references from the database to a file that is stored
outside the database.

DBCLOB. Double-byte character large object.

decompose. Separates XML documents into a
collection of relational tables in an XML collection.

default casting function. Casts the SQL base type to
a UDT.

default view. A representation of data in which an
XML table and all of its related side tables are joined.

distinct type. See user-defined type.

Document Access Definition (DAD). Used to define
the indexing scheme for an XML column or mapping
scheme of an XML collection. It can be used to enable
an XML Extender column of an XML collection, which is
XML formatted.

Document type definition (DTD). A set of
declarations for XML elements and attributes. The DTD
defines what elements are used in the XML document,
in what order they can be used, and which elements
can contain other elements. You can associate a DTD
with a document access definition (DAD) file to validate
XML documents.

double-byte character large object (DBCLOB). A
character string of double-byte characters, or a
combination of single-byte and double-byte characters,
where the string can be up to 2 GB. DBCLOBs have an

© Copyright IBM Corp. 2000, 2001 269

associated code page. Text objects that include
double-byte characters are stored in a DB2 database as
DBCLOBs.

DTD. (1) . (2) See Document type definition.

DTD reference table (DTD_REF table). A table that
contains DTDs, which are used to validate XML
documents and to help applications to define a DAD.
Users can insert their own DTDs into the DTD_REF
table. This table is created when a database is enabled
for XML.

DTD_REF table. DTD reference table.

DTD repository. A DB2 table, called DTD_REF, where
each row of the table represents a DTD with additional
metadata information.

EDI. Electronic Data Interchange.

object. In object-oriented programming, an abstraction
consisting of data and the operations associated with
that data.

ODBC. Open Database Connectivity.

Open Database Connectivity. A standard application
programming interface (API) for accessing data in both
relational and nonrelational database management
systems. Using this API, database applications can
access data stored in database management systems
on a variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based on
the call level interface (CLI) specification of the X/Open
SQL Access Group and was developed by Digital
Equipment Corporation (DEC), Lotus, Microsoft, and
Sybase. Contrast with Java Database Connectivity.

overloaded function. A function name for which
multiple function instances exist.

partition. A fixed-size division of storage.

path expression. See location path.

predicate. An element of a search condition that
expresses or implies a comparison operation.

primary key. A unique key that is part of the definition
of a table. A primary key is the default parent key of a
referential constraint definition.

procedure. See stored procedure.

query. A request for information from the database
based on specific conditions; for example, a query might
be a request for a list of all customers in a customer
table whose balance is greater than 1000.

RDB_node. Relational database node.

RDB_node mapping. The location of the content of
an XML element, or the value of an XML attribute,
which are defined by the RDB_node. The XML Extender
uses this mapping to determine where to store or
retrieve the XML data.

relational database node (RDB_node). A node that
contains one or more element definitions for tables,
optional columns, and optional conditions. The tables
and columns are used to define how the XML data is
stored in the database. The condition specifies either
the criteria for selecting XML data or the way to join the
XML collection tables.

result set. A set of rows returned by a stored
procedure.

result table. A table which contains rows as the result
of an SQL query or an execution of a stored procedure.

root element. The top element of an XML document.

root ID. A unique identifier that associates all side
tables with the application table.

scalar function. An SQL operation that produces a
single value from another value and is expressed as a
function name, followed by a list of arguments enclosed
in parentheses.

schema. A collection of database objects such as
tables, views, indexes, or triggers. It provides a logical
classification of database objects.

section search. Provides the text search within a
section which can be defined by the application. To
support the structural text search, a section can be
defined by the Xpath’s abbreviated location path.

side table. Additional tables created by the XML
Extender to improve performance when searching
elements or attributes in an XML column.

simple location path. A sequence of element type
names connected by a single slash (/).

SQL mapping. A definition of the relationship of the
content of an XML element or value of an XML attribute
with relational data, using one or more SQL statements
and the XSLT data model. The XML Extender uses the
definition to determine where to store or retrieve the
XML data. SQL mapping is defined with the SQL_stmt
element in the DAD.

static SQL. SQL statements that are embedded within
a program, and are prepared during the program
preparation process before the program is executed.
After being prepared, a static SQL statement does not
change, although values of host variables specified by
the statement may change.

stored procedure. A block of procedural constructs
and embedded SQL statements that is stored in a
database and can be called by name. Stored
procedures allow an application program to be run in
two parts. One part runs on the client and the other part
runs on the server. This allows one call to produce
several accesses to the database.

structural text index. To index text strings based on
the tree structure of the XML document, using the DB2
Text Extender.

subquery. A full SELECT statement that is used within
a search condition of an SQL statement.

table space. An abstraction of a collection of
containers into which database objects are stored. A
table space provides a level of indirection between a
database and the tables stored within the database. A
table space:

v Has space on media storage devices assigned to it.

v Has tables created within it. These tables will
consume space in the containers that belong to the
table space. The data, index, long field, and LOB

Glossary 271

portions of a table can be stored in the same table
space, or can be individually broken out into separate
table spaces.

text_node. A representation of the CDATA text of an
element.

top element_node. A representation of the root
element of the XML document in the DAD.

UDF. See user-defined function.

UDT. See user-defined type.

uniform resource locator (URL). An address that
names an HTTP server and optionally a directory and
file name, for example:
http://www.ibm.com/data/db2/extenders.

UNION. An SQL operation that combines the results of
two select statements. UNION is often used to merge
lists of values that are obtained from several tables.

URL. Uniform resource locator.

user-defined function (UDF). A function that is
defined to the database management system and can
be referenced thereafter in SQL queries. It can be one
of the following functions:

v An external function, in which the body of the function
is written in a programming language whose
arguments are scalar values, and a scalar result is
produced for each invocation.

v A sourced function, implemented by another built-in
or user-defined function that is already known to the
DBMS. This function can be either a scalar function
or column (aggregating) function, and returns a single
value from a set of values (for example, MAX or
AVG).

user-defined type (UDT). A data type that is not
native to the database manager and was created by a
user. See distinct type.

user table. A table that is created for and used by an
application.

validation. The process of using a DTD to ensure that
the XML document is valid and to allow structured
searches on XML data. The DTD is stored in the DTD
repository.

valid document. An XML document that has an
associated DTD. To be valid, the XML document cannot
violate the syntactic rules specified in its DTD.

Web browser. A client program that initiates requests
to a Web server and displays the information that the
server returns.

well-formed document. An XML document that does
not contain a DTD. Although in the XML specification, a
document with a valid DTD must also be well-formed.

XML. eXtensible Markup Language.

XML attribute. Any attribute specified by the ATTLIST
under the XML element in the DTD. The XML Extender
uses the location path to identify an attribute.

XML collection. A collection of relation tables which
presents the data to compose XML documents, or to be
decomposed from XML documents.

XML column. A column in the application table that
has been enabled for the XML Extender UDTs.

XML element. Any XML tag or ELEMENT as specified
in the XML DTD. The XML Extender uses the location
path to identify an element.

XML object. Equivalent to an XML document.

XML Path Language. A language for addressing parts
of an XML document. XML Path Language (XPath) is
designed to be used by XSLT. Every location path can
be expressed using the syntax defined for XPath. The
XPath subset implemented in XML Extender is called
location path in this book

XML table. An application table which includes one or
more XML Extender columns.

XML tag. Any valid XML markup language tag, mainly
the XML element. The terms tag and element are used
interchangeably.

XML UDF. A DB2 user-defined function provided by
the XML Extender.

XML UDT. A DB2 user-defined type provided by the
XML Extender.

XPath. A language for addressing parts of an XML
document. The XPath subset implemented in XML
Extender is called location path in this book

XPath data model. The tree structure used to model
and navigate an XML document using nodes.

XSL. XML Stylesheet Language.

XSLT. XML Stylesheet Language Transformation.

272 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Index

A
access and storage method

choosing an 46
planning 46
XML collections 52, 53
XML columns 52, 53

access method
choosing an 46
introduction 5
planning an 46
XML collections 8
XML column 7

access privileges 43
adding

nodes 86, 91, 98
side tables 75, 76

administration
dxxadm command 141
in OS/390 and z/OS 38
stored procedures 189
support tables

DTD_REF 213
XML_USAGE 213

tasks 69
tools 5, 45

administration stored procedures
dxxDisableCollection() 197
dxxDisableColumn() 195
dxxDisableSRV() 193
dxxEnableCollection() 196
dxxEnableColumn() 194
dxxEnableSRV() 192

administration wizard
Disable a Column window 81
Enable a Column window 78
logging in 67
setting up 65
Side-table window 75
specifying address 67
specifying JDBC driver 67
specifying user ID and password 67
starting 65

administrative support tables
DTD_REF 213
XML_USAGE 213

application programming in OS/390 and z/OS 38
attribute_node 54, 60
authorization requirements 45
available operating systems 3

B
B-tree indexing 50
backup 45
bibliography xiii
binding stored procedures 191

C
calling stored procedures 189

casting
default, functions 107
parameter markers 119

casting function
managing XML column data 107
retrieval 110, 158
storage 108, 154
update 114, 183

CCSID, declare in USS 123, 131, 257
cleaning up, getting started 32
client code page 251
CLOB limit, increasing for stored procedures 190
code pages

client 251
considerations 251
consistent encoding in USS 257
consistent encodings and declarations 255
conversion scenarios 258
database 251
DB2 assumptions 251
declaring an encoding 258
document encoding consistency 251, 252, 259
encoding declaration 254
exporting documents 253
importing documents 252
legal encoding declarations 254
line endings 251, 260
preventing inconsistent documents 259
server 251
supported encoding declarations 254
terminology 251
UDFs and stored procedures 252, 253
Windows NT UTF-8 limitation 259
XML Extender assumptions 251

codes
messages and 221
SQLSTATE 217

column data
available UDTs 48
storing XML documents as 73

column type, for decomposition 60
command options

disable_column 147
compatibility mode 42
composing XML documents 27
composite key

for decomposition 59
XML collections 59

composition
dxxGenXML() 121, 123
dxxRetrieveXML() 121, 125
of XML documents 31
overriding the DAD file 126
stored procedures

dxxGenXML() 31, 199
dxxRetrieveXML() 203

XML collection 121

© Copyright IBM Corp. 2000, 2001 273

conditions
optional 59
RDB_node mapping 59
SQL mapping 55, 58

consistent document 251
Content() function

for retrieval 110
retrieval functions using 158
XMLCLOB to an external server file 162
XMLFile to a CLOB 160
XMLVarchar to an external server file 161

conversion of code pages 258
creating

a database 15, 26
DAD file 73
DB2XML schema 69, 72
indexes 20, 81
nodes 86, 91, 98
side tables 75, 76
UDFs 69, 72
UDTs 69, 72
XML collections 26
XML columns 16
XML table 76

D
DAD

node definitions
RDB_node 59

DAD file
attribute_node 54
bind step for USS encodings 257
CCSIDs in USS 123, 131, 257
creating for XML collections 26

from the command line 87, 92, 98
RDB_node mapping 89, 95
SQL mapping 84

creating for XML columns 17, 73
from the command line 75
using the administration wizard 73

declaring the encoding 258
defining side tables 14
DTD for the 237
editing for XML collections

from the command line 87, 92, 98
editing for XML columns

from the command line 75
using the administration wizard 73

element_node 53, 59
examples of 244

RDB_node mapping 248
SQL mapping 245

for XML collections 26
for XML column 77
for XML columns 52, 53
introduction to the 6
mapping scheme 26, 83
node definitions

attribute_node 53
element_node 53

DAD file (continued)
node definitions (continued)

root_node 53
text_node 53

overriding the 126
planning for the 52, 53

tutorial 25
XML collections 52
XML column 17, 52

RDB_node 59
root element_node 59
root_node 53
samples of 244
size limit 52, 53, 263
text_node 54

data types
XMLCLOB 151
XMLFile 151
XMLVarchar 151

database
code page 251
creating 15, 26
enabling for XML 69, 72
relational 55

DB2
and XML documents 3
composing XML documents 8
decomposing XML documents 8
integrating XML documents 5
storing untagged XML data 8
storing XML documents 5

DB2XML 214
DTD_REF table schema 213
schema for stored procedures 9
schema for UDFs 8
schema for UDFs and UDTs 107
schema for UDTs 8
XML_USAGE table schema 213

decomposition
collection table limit 263
composite key 59
DB2 table sizes 60, 130
dxxInsertXML() 131, 133
dxxShredXML() 131
of XML collections 130
specifying the column type for 60
specifying the orderBy attribute 59
specifying the primary key for 59
stored procedures

dxxInsertXML() 210
dxxShredXML() 207

default view, side tables 50
deleting

nodes 86, 91, 98
side tables 76
XML documents 119

Disable a Column window 81
disable_collection subcommand 149
disable_column command 147
disable_server subcommand 145

274 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

disabling
administration command 141
disable_collection subcommand 149
disable_column command 147
disable_server subcommand 145
stored procedure 195, 197
XML collections

from the command line 103
stored procedure 197
using the administration wizard 103

XML columns
from the command line 82
stored procedure 195
using the administration wizard 81

document access definition (DAD) 73
document encoding declaration 251
document type definition 70
DTD

availability 4
for getting started lessons 13, 23
for the DAD 237
for validation 51
inserting 16
inserting from the command line 72
planning 13, 23
publication 4
repository

DTD_REF 6, 213
storing in 70

structured searches 52
using multiple 51, 52
validating with a 52

DTD_REF table 70
column limits 263
inserting a DTD 71
schema 213

DTDID 71, 213, 214
DXX_SEQNO for multiple occurrence 49
dxxadm command

disable_collection subcommand 149
disable_column command 147
disable_server subcommand 145
enable_collection subcommand 148
enable_column subcommand 146
enable_server 70
enable_server subcommand 143
introduction to 141
syntax 142

dxxDisableCollection() stored procedure 197
dxxDisableColumn() stored procedure 195
dxxDisableSRV() stored procedure 193
dxxEnableCollection() stored procedure 196
dxxEnableColumn() stored procedure 194
dxxEnableSRV() stored procedure 192
dxxGenXML() 31
dxxGenXML() stored procedure 121, 199
DXXGPREP, initializing the XML Extender 39
dxxInsertXML() stored procedure 131, 210
dxxRetrieveXML() stored procedure 121, 203
DXXROOT_ID 19, 51
dxxShredXML() stored procedure 131, 207

dxxtrc command 232, 233, 234
dynamically overriding the DAD file, composition 126

E
editing

side tables 75, 76
XML table 76

element_node 53, 59
Enable a Column window 78
enable_collection subcommand 148
enable_column subcommand 146
enable_db command

creating XML_USAGE table 213, 214
enable_server subcommand 143
enabling

administration command 141
database tasks 69, 72
databases for XML

from the command line 72
using the administration wizard 69, 72

enable_collection subcommand 148
enable_column subcommand 146
enable_server subcommand 143
servers for XML

from the command line 70
stored procedure 194, 196
XML collections

from the command line 102
requirements 130
stored procedure 196
using the administration wizard 102

XML columns
for &text; 118
from the command line 79
from the command shell 19
stored procedure 194
using the administration wizard 78

encoding
bind step for USS 257
CCSID declarations in USS 123, 131, 257
consistent declarations 255
conversion 258
conversion by DB2 252, 253, 259
declaration considerations 254
declarations 251, 258
legal, declarations 254
of a document 251
supported declarations 254
XML documents 251

existing DB2 data 8
eXtensible Markup Language (XML) 4
Extensive Stylesheet Language Transformation 61
extractChar() function 171
extractChars() function 171
extractCLOB() function 175
extractCLOBs() function 175
extractDate() function 177
extractDates() function 177
extractDouble() function 167
extractDoubles() function 167
extracting functions

description of 153

Index 275

extracting functions (continued)
extractChar() 171
extractChars() 171
extractCLOB() 175
extractCLOBs() 175
extractDate() 177
extractDates() 177
extractDouble() 167
extractDoubles() 167
extractInteger() 164
extractIntegers() 164
extractReal() 169
extractReals() 169
extractSmallint() 165
extractSmallints() 165
extractTime() 179
extractTimes() 179
extractTimestamp() 181
extractTimestamps() 181
extractVarchar() 173
extractVarchars() 173
introduction to 163
table of 113

extractInteger() function 164
extractIntegers() function 164
extractReal() function 169
extractReals() function 169
extractSmallint() function 165
extractSmallints() function 165
extractTime() function 179
extractTimes() function 179
extractTimestamp() function 181
extractTimestamps() function 181
extractVarchar() function 173
extractVarchars() function 173

F
FROM clause 58
full text search 8
function path, adding DB2XML schema 107
functions

casting 108, 109, 110, 113, 114
Content(): from XMLCLOB to file 162
Content(): from XMLFILE to CLOB 160
Content(): from XMLVARCHAR to file 161
extractChar() 171
extractChars() 171
extractCLOB() 175
extractCLOBs() 175
extractDate() 177
extractDates() 177
extractDouble() 167
extractDoubles() 167
extracting 153, 163
extractInteger() 164
extractIntegers() 164
extractReal() 169
extractReals() 169
extractSmallint() 165
extractSmallints() 165
extractTime() 179

functions (continued)
extractTimes() 179
extractTimestamp() 181
extractTimestamps() 181
extractVarchar() 173
extractVarchars() 173
for XML columns 153
generate_unique 153, 188
limitations when invoking from JDBC 119
limits 263
retrieval 109, 110

description 153
from external storage to memory pointer 158
from internal storage to external server file 158
introduction 158

storage 108, 153, 154
summary table of 154
update 113, 114, 153, 183
XMLCLOB to an external server file 162
XMLCLOBFromFile() 156
XMLFile to a CLOB 160
XMLFileFromCLOB() 158
XMLFileFromVarchar() 157
XMLVarchar to an external server file 161
XMLVarcharFromFile() 155

G
generate_unique() function 188
generate_unique function

description of 153
introduction to 188

getting started lessons
cleaning up 32
collection tables 22
composing the XML document 31
creating DAD files 17, 25, 26, 28
creating indexes 20
creating the database 15, 26
creating the XML collection 26
creating the XML column 16
defining side tables 14
inserting the DTD 16
introduction 11
overview 11
planning 13, 23
searching the XML document 21
storing the XML document 21

getting started scripts 15, 25
goal mode 42

H
highlighting conventions x

I
importing the DTD 70
include files for stored procedures 189
inconsistent document 251
indexes, for side tables 20, 81

276 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

indexing
considerations 50
multiple indexes 50
ROOT ID 50
side tables 50
Text Extender structural-text 51
with side tables 14, 50
with Text Extender 50
with XML columns 50
XML columns 50
XML documents 50
XML documents with multiple occurrence 50

initializing
the XML Extender 39

installing
the XML Extender 37

invoking the administration wizard 66

J
JCL jobs 38
JDBC, limitations when invoking functions 154
JDBC, limitations when invoking UDFs 119
JDBC address, for wizard 67
JDBC driver, for wizard 67
join conditions

RDB_node mapping 59
SQL mapping 58

L
limits

stored procedure parameters 121, 213
The XML Extender 263

line endings
code page considerations 251, 260

location path
introduction to 6, 61
simple 62
syntax 61
usage 62
XPath 6, 61
XSL 6, 61
XSLT 61

logging in, for wizard 67

M
maintaining document structure 7
management

retrieving column data 109
searching XML documents 115
storing column data 108
updating column data 113
XML collection data 121

mapping scheme
creating the DAD for the 26, 83
determining RDB_node mapping 56
determining SQL mapping 55
editing the DAD for the 83
figure of DAD for the 48

mapping scheme (continued)
for XML collections 48
for XML columns 48
FROM clause 58
introduction 8
ORDER BY clause 58
RDB_node mapping requirements 59
requirements 57
SELECT clause 57
SQL mapping requirements 57
SQL mapping scheme 57
SQL_stmt 55
WHERE clause 58

messages and codes 221
multiple DTDs

XML collections 52
XML columns 51

multiple occurrence
affecting table size 60, 130
deleting elements and attributes 135
DXX_SEQNO 49
indexing XML documents with 50
one column per side table 49
order of elements and attributes 130
orderBy attribute 59
preserving the order of elements and attributes 136
recomposing documents with 59
searching elements and attributes 117
updating collections 134
updating elements and attributes 115, 135, 186
updating XML documents 115, 186

multiple-occurrence attribute 29
MVS environment 38

N
nodes

add new 86, 91, 98
attribute_node 54
creating 86, 91, 98
DAD file configuration 28, 88, 92, 99
deleting 86, 91, 98
element_node 53
RDB_node 59
removing 86, 91, 98
root, creating 86
root_node 53
text_node 54

O
operating environment, OS/390 and z/OS 38
operating systems supported 3
ORDER BY clause 58
orderBy attribute

for decomposition 59
for multiple occurrence 59
XML collections 59

overloaded function, Content() 158
overrideType

No override 126
SQL override 126

Index 277

overrideType (continued)
XML override 126

overriding the DAD file 126

side tables (continued)
create 75
default view 50
deleting 75
DXX_SEQNO 49
DXXROOT_ID 19
editing 75, 76
getting started lessons 14
indexing 14, 50
multiple occurrence 49
planning 49
removing 75, 76
ROOT ID 19
searching 14, 21, 115
specifying ROOT ID 79
updating 114

sizes, limits 263
software requirements 37
SQL DELETE, to delete XML documents 119
SQL mapping

creating a DAD 28, 84
determining for XML collections 55
FROM clause 58
ORDER BY clause 58
requirements 57
SELECT clause 57
SQL mapping scheme 57
WHERE clause 58

SQL override 126
SQL_stmt

FROM clause 58
ORDER_BY clause 58
SELECT clause 57
WHERE clause 58

SQLSTATE codes 217
starting

administration wizard 65
the administration wizard 66
the XML Extender 37

storage functions
description of 153
introduction to 154
storage UDF table 109
XMLCLOBFromFile() 156
XMLFileFromCLOB() 158
XMLFileFromVarchar() 157
XMLVarcharFromFile() 155

storage method
choosing a 46
introduction 5
planning a 46
XML collections 8
XML column 7

storage UDFs 109, 114
stored procedures

administration 189, 191
dxxDisableCollection() 197
dxxDisableColumn() 195
dxxDisableSRV() 193
dxxEnableCollection() 196
dxxEnableColumn() 194

stored procedures (continued)
administration 189, 191 (continued)

dxxEnableSRV() 192
calling 189
code page considerations 252, 253, 259
composition 189, 198

dxxGenXML() 199
dxxRetrieveXML() 203

decomposition 189, 206
dxxInsertXML() 210
dxxShredXML() 207

dxxDisableCollection() 197
dxxDisableColumn() 195
dxxDisableSRV() 193
dxxEnableCollection() 196
dxxEnableColumn() 194
dxxEnableSRV() 192
dxxGenXML() 31, 121, 199
dxxInsertXML() 131, 210
dxxRetrieveXML() 121, 203
dxxShredXML() 131, 207
include files 189
initializing with DXXGPREP 191
return codes 216
update 189

storing the DTD 70
structure

hierarchical 24
of DTD 24
of mapping 14, 24
of XML document 24
relational tables 14, 24

stylesheets 54, 95
subcommands, dxxadm

disable_collection 149
disable_server 145
enable_collection 148
enable_column 146
enable_server 143

syntax diagram
disable_collection subcommand 149
disable_column command 147
disable_server subcommand 145
dxxadm 142
enable_collection subcommand 148
enable_column subcommand 146
enable_server subcommand 143
extractChar() function 171
extractChars() function 171
extractCLOB() function 175
extractCLOBs() function 175
extractDate() function 177
extractDates() function 177
extractDouble() function 167
extractDoubles() function 167
extractInteger() function 164
extractIntegers() function 164
extractReal() function 169
extractReals() function 169
extractSmallint() function 165
extractSmallints() function 165

Index 279

syntax diagram (continued)
extractTime() function 179
extractTimes() function 179
extractTimestamp() function 181
extractTimestamps() function 181
extractVarchar() function 173
extractVarchars() function 173
generate_unique() function 188
how to read xi
location path 61
Update() function 183
XMLCLOB to an external server file Content()

function 162
XMLCLOBFromFile() function 156
XMLFile to a CLOB Content() function 160
XMLFileFromCLOB() function 158
XMLFileFromVarchar() function 157
XMLVarchar to an external server file Content()

function 161
XMLVarcharFromFile() function 155

T
table of UDFs 154
tables sizes, for decomposition 60, 130
Text Extender

enabling for search 118
enabling XML columns for 118
searching with 118

text_node 54, 60
tracing

dxxtrc command 232
starting 233
stopping 234

transfer of documents between client and server,
considerations 251

troubleshooting 215
messages and codes 221
SQLSTATE codes 217
stored procedure return codes 216
tracing 232
UDF return codes 215

TSO environment 38

U
UDFs

code page considerations 252, 253, 259
extractChar() 171
extractChars() 171
extractCLOB() 175
extractCLOBs() 175
extractDate() 177
extractDates() 177
extractDouble() 167
extractDoubles() 167
extracting functions 163
extractInteger() 164
extractIntegers() 164
extractReal() 169
extractReals() 169
extractSmallint() 165

UDFs (continued)
extractSmallints() 165
extractTime() 179
extractTimes() 179
extractTimestamp() 181
extractTimestamps() 181
extractVarchar() 173
extractVarchars() 173
for XML columns 153
from external storage to memory pointer 158
from internal storage to external server file 158
generate_unique() 188
limitations when invoking from JDBC 154
retrieval functions 158
return codes 215
searching with 117
storage 114
summary table of 154
Update() 114, 183
XMLCLOB to an external server file 162
XMLCLOBFromFile() 156
XMLFile to a CLOB 160
XMLFileFromCLOB() 158
XMLFileFromVarchar() 157
XMLVarchar to an external server file 161
XMLVarcharFromFile() 155

UDTs
introduction to 8
summary table of 48
XML table 77
XMLCLOB 48
XMLFILE 48
XMLVARCHAR 48

unique key column, generating 188
Update() function 114, 183
update function

description of 153
document replacement behavior 184
introduction to 183

updating
how the Update() UDF replaces XML

documents 184
side tables 114
XML column data 113

attributes 114
entire document 114
multiple occurrence 115, 186
specific elements 114

usage for the location path 62
user-defined functions (UDFs)

for XML columns 153
full text search 8
generate_unique() 188
schema 8
searching with 117
summary table of 154
Update() 114, 183

user-defined types
for XML columns 107
XMLCLOB 107
XMLFILE 107

280 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

user-defined types (continued)
XMLVARCHAR 107

user-defined types (UDTs) 7
user ID and password, for wizard 67

V
validate XML data

considerations 51, 52
deciding to 51, 52
DTD requirements 51, 52

validating
DTD 70
performance impact 52, 53
using a DTD 51
XML data 51

W
WHERE clause 58
Windows NT UTF-8 limitation, code pages 259
Workload Manager (WLM) 41

X
XML 4
XML applications 4
XML collections

composition 121
creating 26
creating a DAD

RDB_node mapping 89, 95
SQL mapping 84

creating the DAD
from the command line 87, 92, 98

DAD file, planning for 52
decomposition 130
definition of 6
determining a mapping scheme for 55
disabling 103

from the command line 103
using the administration wizard 103

DTD for validation 70
editing the DAD

from the command line 87, 92, 98
enabling 101

from the command line 102
using the administration wizard 102

introduction to 8
managing XML collection data 121
mapping scheme 55

creating the DAD 83
editing the DAD 83

mapping schemes 55
RDB_node mapping 56
scenarios 47
searching 136
setting up 83
SQL mapping 55
storage and access methods 5, 8
validation 70

XML collections (continued)
when to use 47

XML columns 109
adding 18
configuring 73
creating 16
creating the DAD 17

from the command line 75
using the administration wizard 73

DAD file, planning for 52
default view of side tables 50
definition of 6
determining column UDT 48
disabling

from the command line 82
using the administration wizard 81

editing the DAD
from the command line 75
using the administration wizard 73

elements and attributes to be searched 48
enabling 19

from the command line 79
using the administration wizard 78

figure of side tables 49
indexing 50
introduction to 7
location path 61
maintaining document structure 7
managing 107
planning 48
preparing the DAD 17
retrieving data

attribute values 111
element contents 111
entire document 110

sample DAD file 244
scenarios 46
setting up 73
side tables 20
storage and access methods 5, 7
storing data 108
the DAD for 52
UDFs 153
updating XML data

attributes 114
entire document 114
specific elements 114

view columns 20
view side tables 20
when to use 46
with side tables 50
XML type 18

XML documents
B-tree indexing 50
code page assumptions 251
code page consistency 251, 252, 253, 259
composing 27, 121
creating indexes 20, 81
decomposition 130, 131
default casting functions 21
deleting 119

Index 281

XML documents (continued)
encoding declarations 254
exporting, code page conversion 253
importing, code page conversion 252, 259
indexing 50
introduction to 3
legal encoding declarations 254
mapping to tables 14, 24
searching 21, 115

direct query on side tables 116
document structure 116
from a joined view 116
multiple occurrence 117
Text Extender structural text 117
with extracting UDFs 117

stored in DB2 3
storing 21
supported encoding declarations 254

XML DTD repository

DTD Reference Table (DTD_REF) 6
introduction to 6

XML Extender

available operating systems 3
capabilities 6
features 6
functions 153
initializing with DXXGPREP 39
installing 37
introduction to 3

XML Extender stored procedures 189

XML operating environment on OS/390 and z/OS 38

XML override 126

XML Path Language 6, 61

XML repository 46

XML table

creating 76
editing 76

XML Toolkit for OS/390 and z/OS 11, 37

XML_USAGE table 213

XMLCLOB to an external server file function 162

XMLClobFromFile() function 156

XMLFile to a CLOB function 160

XMLFileFromCLOB() function 158

XMLFileFromVarchar() function 157

XMLVarchar to an external server file function 161

XMLVarcharFromFile() function 155

XPath 6, 61

XSLT 55, 61

282 DB2 Universal Database for OS/390and z/OS: XML Extender Administration and Programming

Readers’ Comments — We’d Like to Hear from You

DB2 Universal Database for OS/390 and z/OS
XML Extender
Administration and Programming
Version 7

Publication No. SC26-9949-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-9949-00

SC26-9949-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department HHX/H3 PO Box 49023
SAN JOSE CA 95161-9023

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9949-00

	Contents
	About this book
	Who should use this book
	How to get a current version of this book
	How to use this book
	Highlighting conventions
	How to read syntax diagrams
	Related information
	How to send your comments

	Part 1. Introduction
	Chapter 1. Introduction to the XML Extender
	XML documents
	XML applications
	Why XML and DB2?
	How XML and DB2 work together
	Administration tools
	Storage and access methods
	DTD repository
	Document Access Definitions (DADs)
	Location path
	XML column: structured document storage and retrieval
	XML Extender user-defined types
	XML Extender user-defined functions

	XML collection: integrated data management

	Chapter 2. Getting started with XML Extender
	Scenario for the lessons
	Choosing a method to run the Getting Started lessons
	Lesson: Store an XML document in an XML column
	The scenario
	Planning
	The XML document structure
	Determining the XML data type for the XML column
	Determining elements and attributes to be searched
	Mapping the XML document to the side tables
	Getting started scripts and samples

	Setting up the lesson environment
	Creating the database

	Enabling the XML column and storing the document
	Storing the DTD in the DTD repository
	Preparing the DAD file
	Creating the SALES_TAB table
	Adding the column of XML type
	Enabling the XML column
	Viewing the column and side tables
	Creating indexes on the side tables
	Storing the XML document
	Searching the XML document

	Lesson: Composing an XML document
	The scenario
	Planning
	Determining the document structure
	Mapping the XML document and database relationship
	Getting started scripts and samples

	Setting up the lesson environment
	Creating the database

	Creating the XML collection: preparing the DAD file
	Composing the XML document

	Cleaning up the tutorial environment

	Part 2. Administration
	Chapter 3. Preparing to use the XML Extender: administration
	Set-up requirements
	Software requirements
	Installation requirements
	XML operating environment on OS/390 and z/OS
	Application programming
	Administration environment

	Initializing DB2 XML Extender
	Initializing the XML Extender environment using DXXGPREP
	Initializing the XML Extender administration wizard

	Workload management considerations
	The number of WLM environments
	Performance objectives for WLM environments

	Table space considerations when enabling a database server
	Creating table spaces for the administration support tables
	Creating table spaces for XML tables

	Security considerations
	Access to XML columns in tables
	Access to content in files
	EXECUTE authority
	Authority to administer the XML Extender

	Backup and recovery considerations

	Administration tools
	Administration planning
	Choosing an access and storage method
	When to use XML columns
	When to use XML collections

	Planning for XML columns
	Determining the XML data type for the XML column
	Determining elements and attributes to be indexed
	Planning side tables
	Indexes for XML column data
	Validation
	The DAD file

	Planning for XML collections
	Validation
	The DAD file
	Mapping schemes for XML collections
	Decomposition table size requirements

	Location path
	Location path syntax
	Simple location path
	Location path usage

	Chapter 4. Using the administration tools
	Starting the administration wizard
	Setting up the administration wizard
	Invoking the administration wizard

	Using the USS odb2 command line

	Chapter 5. Managing the database server
	Enabling a database server for XML
	Using the administration wizard
	Using the command line

	Storing a DTD in the DTD repository table
	Using the administration wizard
	From the command line

	Disabling a server for XML
	Before you begin
	Using the administration wizard
	Using the command line

	Chapter 6. Working with XML columns
	Creating or editing the DAD file
	Before you begin
	Using the administration wizard
	Using the command line

	Creating or altering an XML table
	Using the administration wizard
	Using the command line

	Enabling XML columns
	Before you begin
	Using the administration wizard
	Using the command line

	Indexing side tables
	Before you begin
	Creating the indexes

	Disabling XML columns
	Before you begin
	Using the administration wizard
	Using the command line

	Chapter 7. Working with XML collections
	Creating or editing the DAD file for the mapping scheme
	Before you begin
	Composing XML documents with SQL mapping
	Using the administration wizard
	Using the command line

	Composing XML documents with RDB_node mapping
	Using the administration wizard
	Using the command line

	Specifying a stylesheet for the XML document
	Decomposing XML documents with RDB_node mapping
	Using the administration wizard
	Using the command line

	Enabling XML collections
	Using the administration wizard
	Using the command line

	Disabling XML collections
	Using the administration wizard
	Using the command line

	Part 3. Programming
	Chapter 8. Managing XML column data
	User-defined types and user-defined function names
	Storing data
	Retrieving data
	Retrieving an entire document
	Retrieving element contents and attribute values

	Updating XML data
	Searching XML documents
	Searching the XML document by structure
	Searching with direct query on side tables
	Searching from a joined view
	Searching with extracting UDFs
	Searching on elements or attributes with multiple occurrence

	Using the Text Extender for structural text search
	Enabling an XML column for the Text Extender
	Searching for text using the Text Extender

	Deleting XML documents
	Limitations when invoking functions from Java database (JDBC)

	Chapter 9. Managing XML collection data
	Composing XML documents from DB2 data
	Before you begin
	Composing the XML document
	Dynamically overriding values in the DAD file

	Decomposing XML documents into DB2 data
	Enabling an XML collection for decomposition
	Decomposition table size limits
	Before you begin
	Decomposing the XML document

	Accessing an XML collection
	Updating data in an XML collection
	Updating element and attribute values
	Deleting element and attribute instances

	Deleting an XML document from an XML collection
	Retrieving XML documents from an XML collection

	Searching an XML collection

	Part 4. Reference
	Chapter 10. XML Extender administration command: DXXADM
	High-level syntax
	Administration subcommands
	enable_server
	disable_server
	enable_column
	disable_column
	enable_collection
	disable_collection

	Chapter 11. XML Extender user-defined types
	Chapter 12. XML Extender user-defined functions
	Storage functions
	XMLVarcharFromFile()
	XMLCLOBFromFile()
	XMLFileFromVarchar()
	XMLFileFromCLOB()

	Retrieval functions
	Content(): retrieve from XMLFILE to a CLOB
	Content(): retrieve from XMLVARCHAR to an external server file
	Content(): retrieval from XMLCLOB to an external server file

	Extracting functions
	extractInteger() and extractIntegers()
	extractSmallint() and extractSmallints()
	extractDouble() and extractDoubles()
	extractReal() and extractReals()
	extractChar()and extractChars()
	extractVarchar() and extractVarchars()
	extractCLOB() and extractCLOBs()
	extractDate() and extractDates()
	extractTime() and extractTimes()
	extractTimestamp() and extractTimestamps()

	Update function
	Purpose
	Syntax
	Parameters
	Return type
	Example
	Usage
	How the Update function processes the XML document
	Multiple occurrence
	Examples

	Generate unique function
	Purpose
	Syntax
	Return value
	Example

	Chapter 13. XML Extender stored procedures
	Specifying include files
	Calling XML Extenders stored procedures
	Increasing the CLOB limit
	Before you begin
	Administration stored procedures
	dxxEnableSRV()
	dxxDisableSRV()
	dxxEnableColumn()
	dxxDisableColumn()
	dxxEnableCollection()
	dxxDisableCollection()

	Composition stored procedures
	dxxGenXML()
	dxxRetrieveXML()

	Decomposition stored procedures
	dxxShredXML()
	dxxInsertXML()

	Chapter 14. Administration support tables
	DTD reference table
	XML usage table

	Chapter 15. Troubleshooting
	Handling UDF return codes
	Handling stored procedure return codes
	SQLSTATE codes
	Messages
	Error messages

	Tracing
	Starting the trace
	Stopping the trace

	Part 5. Appendixes
	Appendix A. DTD for the DAD file
	Appendix B. Samples
	XML DTD
	XML document: getstart.xml
	Document access definition files
	DAD file: XML column
	DAD file: XML collection - SQL mapping
	DAD file: XML - RDB_node mapping

	Appendix C. Code page considerations
	Terminology
	DB2 and XML Extender code page assumptions
	Assumptions for importing an XML document
	Assumptions for exporting an XML document

	Encoding declaration considerations
	Legal encoding declarations
	Consistent encodings and encoding declarations
	Consistent encodings in USS
	Declaring an encoding

	Conversion scenarios
	Preventing inconsistent XML documents
	Line ending considerations
	Processing XML documents with the linebrk utility

	Appendix D. The XML Extender limits
	Appendix E. Notices
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

